Suppr超能文献

单个酵母细胞在电化学诱导碰撞过程中的平均碰撞速度。

Average collision velocity of single yeast cells during electrochemically induced impacts.

机构信息

Chemistry Department, Virginia Commonwealth University, Richmond, VA, 23294, USA.

Chemistry Department, Khulna University of Engineering and Technology, Bangladesh.

出版信息

Analyst. 2024 May 28;149(11):3214-3223. doi: 10.1039/d4an00134f.

Abstract

We recorded current-time (-) profiles for oxidizing ferrocyanide (FCN) while spherical yeast cells of radius ( ≈ 2 μm) collided with disk ultramicroelectrodes (UMEs) of increasing radius ( ≈ 12-45 μm). Collision signals appear as minority steps and majority blips of decreased current overlayed on the - baseline when cells block ferrocyanide flux (). We assigned steps to adsorption events and blips to bouncing collisions or contactless passages. Yeast cells exhibit impact signals of long duration (Δ ≈ 15-40 s) likely due to sedimentation. We assume cells travel a threshold distance () to generate collision signals of duration Δ. Thus, represents a distance from the UME surface, at which cell perturbations on blend in with the UME noise level. To determine , we simulated the UME current, while placing the cell at increasing distal points from the UME surface until matching the bare UME current. -Values at 90°, 45°, and 0° from the UME edge and normal to the center were determined to map out T-regions in different experimental conditions. We estimated average collision velocities using the formula /Δ, and mimicked cells entering and leaving T-regions at the same angle. Despite such oversimplification, our analysis yields average velocities compatible with rigorous transport models and matches experimental current steps and blips. We propose that single-cells encode collision dynamics into - signals only when cells move inside the sensitive T-region, because outside, perturbations of fall within the noise level set by and / (experimentally established). If true, this notion will enable selecting conditions to maximize sensitivity in stochastic blocking electrochemistry. We also exploited the long Δ recorded here for yeast cells, which was undetectable for the fast microbeads used in early pioneering work. Because Δ depends on transport, it provides another analytical parameter besides current for characterizing slow-moving cells like yeast.

摘要

我们记录了氧化亚铁氰化物(FCN)的电流-时间 (-) 曲线,同时半径约为 2μm 的球形酵母细胞与半径不断增加(约 12-45μm)的盘状超微电极(UME)发生碰撞。当细胞阻断亚铁氰化物通量时,碰撞信号表现为电流减少的少数阶跃和多数突发()。我们将阶跃分配给吸附事件,将突发分配给反弹碰撞或非接触通过。酵母细胞表现出持续时间较长的冲击信号(Δ≈15-40s),可能是由于沉降所致。我们假设细胞在达到碰撞信号持续时间 Δ之前会行进一段阈值距离 ()。因此,代表距离 UME 表面的距离,在此距离处,细胞对的扰动与 UME 噪声水平混合。为了确定,我们模拟了 UME 的电流,同时将细胞放置在距离 UME 表面越来越远的位置,直到与裸露的 UME 电流匹配。通过从 UME 边缘以 90°、45°和 0°的角度和垂直于中心的位置确定值,以绘制不同实验条件下 T-区域的图谱。我们使用公式 /Δ 来估计平均碰撞速度,并模拟细胞以相同角度进入和离开 T-区域。尽管这种简化很粗糙,但我们的分析结果与严格的传输模型得出的平均速度相匹配,并与实验电流阶跃和突发相匹配。我们提出,只有当细胞在敏感的 T-区域内移动时,单细胞才会将碰撞动力学编码到 - 信号中,因为在该区域之外,的扰动落入由和 /(实验确定)设定的噪声水平内。如果这是真的,那么这个概念将能够选择条件以最大化随机阻塞电化学的灵敏度。我们还利用了这里记录的酵母细胞的长 Δ,这对于早期开创性工作中使用的快速微球是无法检测到的。因为 Δ 取决于传输,所以它提供了除电流之外的另一个分析参数,用于表征像酵母这样的缓慢运动的细胞。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验