Suppr超能文献

动态代谢的协调出现。

Emergence of Orchestrated and Dynamic Metabolism of .

机构信息

Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States.

Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States.

出版信息

ACS Synth Biol. 2024 May 17;13(5):1442-1453. doi: 10.1021/acssynbio.3c00542. Epub 2024 Apr 24.

Abstract

Microbial metabolism is a fundamental cellular process that involves many biochemical events and is distinguished by its emergent properties. While the molecular details of individual reactions have been increasingly elucidated, it is not well understood how these reactions are quantitatively orchestrated to produce collective cellular behaviors. Here we developed a coarse-grained, systems, and dynamic mathematical framework, which integrates metabolic reactions with signal transduction and gene regulation to dissect the emergent metabolic traits of . Our framework mechanistically captures a set of characteristic cellular behaviors, including the Crabtree effect, diauxic shift, diauxic lag time, and differential growth under nutrient-altered environments. It also allows modular expansion for zooming in on specific pathways for detailed metabolic profiles. This study provides a systems mathematical framework for yeast metabolic behaviors, providing insights into yeast physiology and metabolic engineering.

摘要

微生物代谢是一种涉及许多生化事件的基本细胞过程,其特点是具有突现性质。虽然单个反应的分子细节已经越来越清楚,但尚不清楚这些反应如何被定量协调以产生集体的细胞行为。在这里,我们开发了一个粗粒度的、系统的和动态的数学框架,该框架将代谢反应与信号转导和基因调控相结合,以剖析 的突现代谢特征。我们的框架从机制上捕捉到了一组特征性的细胞行为,包括 Crabtree 效应、双相转换、双相滞后时间以及在营养改变环境下的差异生长。它还允许模块化扩展,以便详细研究特定途径的代谢特征。这项研究为酵母代谢行为提供了一个系统的数学框架,深入了解了酵母生理学和代谢工程。

相似文献

1
Emergence of Orchestrated and Dynamic Metabolism of .
ACS Synth Biol. 2024 May 17;13(5):1442-1453. doi: 10.1021/acssynbio.3c00542. Epub 2024 Apr 24.
2
Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative.
Nat Commun. 2018 Aug 3;9(1):3059. doi: 10.1038/s41467-018-05409-9.
3
Genome-Scale C Fluxomics Modeling for Metabolic Engineering of Saccharomyces cerevisiae.
Methods Mol Biol. 2019;1859:317-345. doi: 10.1007/978-1-4939-8757-3_19.
4
Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
Appl Microbiol Biotechnol. 2017 Mar;101(6):2241-2250. doi: 10.1007/s00253-017-8172-1. Epub 2017 Feb 15.
6
Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.
FEMS Yeast Res. 2012 Mar;12(2):197-214. doi: 10.1111/j.1567-1364.2011.00769.x. Epub 2012 Jan 12.
7
Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
Biotechnol Bioeng. 2012 Sep;109(9):2325-39. doi: 10.1002/bit.24503. Epub 2012 Apr 24.
8
Metabolic engineering of Saccharomyces cerevisiae for glycerol utilization.
FEMS Yeast Res. 2023 Jan 4;23. doi: 10.1093/femsyr/foad014.
10
Control of the Yeast Mating Pathway by Reconstitution of Functional α-Factor Using Split Intein-Catalyzed Reactions.
ACS Synth Biol. 2017 Aug 18;6(8):1453-1460. doi: 10.1021/acssynbio.7b00078. Epub 2017 May 16.

引用本文的文献

2
How Does Allocate Proteome?
ACS Synth Biol. 2024 Sep 20;13(9):2718-2732. doi: 10.1021/acssynbio.3c00537. Epub 2024 Aug 9.
3
Controlling circuitry underlies the growth optimization of Saccharomyces cerevisiae.
Metab Eng. 2023 Nov;80:173-183. doi: 10.1016/j.ymben.2023.09.013. Epub 2023 Sep 21.

本文引用的文献

1
Controlling circuitry underlies the growth optimization of Saccharomyces cerevisiae.
Metab Eng. 2023 Nov;80:173-183. doi: 10.1016/j.ymben.2023.09.013. Epub 2023 Sep 21.
4
Applications of Coarse-Grained Models in Metabolic Engineering.
Front Mol Biosci. 2022 Mar 8;9:806213. doi: 10.3389/fmolb.2022.806213. eCollection 2022.
6
Kinetic Modeling of Central Carbon Metabolism: Achievements, Limitations, and Opportunities.
Metabolites. 2022 Jan 13;12(1):74. doi: 10.3390/metabo12010074.
7
AMPK Phosphorylation Is Controlled by Glucose Transport Rate in a PKA-Independent Manner.
Int J Mol Sci. 2021 Aug 31;22(17):9483. doi: 10.3390/ijms22179483.
10
Proteome reallocation from amino acid biosynthesis to ribosomes enables yeast to grow faster in rich media.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21804-21812. doi: 10.1073/pnas.1921890117. Epub 2020 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验