Suppr超能文献

深度学习模型在对比增强乳腺摄影中对背景实质增强的分类。

Deep-learning model for background parenchymal enhancement classification in contrast-enhanced mammography.

机构信息

GE HealthCare, Buc, France.

出版信息

Phys Med Biol. 2024 May 20;69(11). doi: 10.1088/1361-6560/ad42ff.

Abstract

Breast background parenchymal enhancement (BPE) is correlated with the risk of breast cancer. BPE level is currently assessed by radiologists in contrast-enhanced mammography (CEM) using 4 classes: minimal, mild, moderate and marked, as described in(BI-RADS). However, BPE classification remains subject to intra- and inter-reader variability. Fully automated methods to assess BPE level have already been developed in breast contrast-enhanced MRI (CE-MRI) and have been shown to provide accurate and repeatable BPE level classification. However, to our knowledge, no BPE level classification tool is available in the literature for CEM.A BPE level classification tool based on deep learning has been trained and optimized on 7012 CEM image pairs (low-energy and recombined images) and evaluated on a dataset of 1013 image pairs. The impact of image resolution, backbone architecture and loss function were analyzed, as well as the influence of lesion presence and type on BPE assessment. The evaluation of the model performance was conducted using different metrics including 4-class balanced accuracy and mean absolute error. The results of the optimized model for a binary classification: minimal/mild versus moderate/marked, were also investigated.The optimized model achieved a 4-class balanced accuracy of 71.5% (95% CI: 71.2-71.9) with 98.8% of classification errors between adjacent classes. For binary classification, the accuracy reached 93.0%. A slight decrease in model accuracy is observed in the presence of lesions, but it is not statistically significant, suggesting that our model is robust to the presence of lesions in the image for a classification task. Visual assessment also confirms that the model is more affected by non-mass enhancements than by mass-like enhancements.The proposed BPE classification tool for CEM achieves similar results than what is published in the literature for CE-MRI.

摘要

乳腺背景实质增强(BPE)与乳腺癌风险相关。目前,BPE 水平由对比增强乳腺摄影(CEM)中的放射科医生使用 4 个类别进行评估:最小、轻度、中度和显著,如(BI-RADS)所述。然而,BPE 分类仍然存在观察者内和观察者间的可变性。已经在乳腺对比增强磁共振成像(CE-MRI)中开发了用于评估 BPE 水平的全自动方法,并且已经证明这些方法能够提供准确且可重复的 BPE 水平分类。然而,据我们所知,文献中尚无用于 CEM 的 BPE 水平分类工具。基于深度学习的 BPE 水平分类工具已经在 7012 对 CEM 图像对(低能和重组图像)上进行了训练和优化,并在 1013 对图像数据集上进行了评估。分析了图像分辨率、骨干架构和损失函数的影响,以及病变存在和类型对 BPE 评估的影响。使用包括 4 类平衡准确性和平均绝对误差在内的不同指标对模型性能进行了评估。还研究了针对二进制分类(最小/轻度与中度/显著)的优化模型的结果。优化后的模型在 4 类平衡准确性为 71.5%(95%CI:71.2-71.9),相邻类别之间的分类错误率为 98.8%。对于二进制分类,准确率达到 93.0%。在存在病变的情况下,模型准确性略有下降,但没有统计学意义,表明我们的模型对于图像中病变的存在具有稳健性,可用于分类任务。视觉评估还证实,该模型受非肿块增强的影响大于肿块样增强的影响。该 CEM 的 BPE 分类工具的提出,与文献中 CE-MRI 的结果相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验