Suppr超能文献

乳腺影像报告和数据系统(BI-RADS)乳腺增强磁共振成像(CEM)词典的阅片者间一致性

Inter-reader agreement of the BI-RADS CEM lexicon.

作者信息

Zarcaro Calogero, Santonocito Ambra, Zeitouni Layla, Ferrara Francesca, Kapetas Panagiotis, Milos Ruxandra-Iulia, Helbich Thomas H, Baltzer Pascal A T, Clauser Paola

机构信息

Department of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University Hospital "Policlinico P. Giaccone", Palermo, Italy.

Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

出版信息

Eur Radiol. 2025 May;35(5):2378-2386. doi: 10.1007/s00330-024-11176-7. Epub 2024 Nov 6.

Abstract

PURPOSE

The purpose of this study was to assess the inter-reader agreement of the breast imaging reporting and data system (BI-RADS) contrast-enhanced mammography (CEM) lexicon.

MATERIALS AND METHODS

In this IRB-approved, single-center, retrospective study, three breast radiologists, each with different levels of experience, reviewed 462 lesions in 421 routine clinical CEM according to the fifth edition of the BI-RADS lexicon for mammography and to the first version of the BI-RADS lexicon for CEM. Readers were blinded to patient outcomes and evaluated breast and lesion features on low-energy (LE) images (breast density, type of lesion, associated architectural distortion), lesion features on recombined (RC) images (type of enhancement, characteristic of mass enhancement, non-mass enhancement or enhancing asymmetry), and provided a final BI-RADS assessment. The inter-reader agreement was calculated for each evaluated feature using Fleiss' kappa coefficient. Sensitivity and specificity were calculated.

RESULTS

The inter-reader agreement was moderate to substantial for breast density (ĸ = 0.569), type of lesion on LE images (ĸ = 0.654), and type of enhancement (ĸ = 0.664). There was a moderate to substantial agreement on CEM mass enhancement descriptors. The agreement was fair to moderate for non-mass enhancement and enhancing asymmetry descriptors. Inter-reader agreement for LE and LE with RC BI-RADS assessment was moderate (ĸ = 0.421) and fair (ĸ = 0.364). Diagnostic performance was good and comparable for all readers.

CONCLUSION

Inter-reader agreement of the CEM lexicon was moderate to substantial for most features. There was a low agreement for some RC descriptors, such as non-mass enhancement and enhancing asymmetry, and BI-RADS assessment, but this did not impact the diagnostic performance.

KEY POINTS

Question Data on the reproducibility and inter-reader agreement for the first version of the BI-RADS lexicon dedicated to CEM are missing. Finding The inter-reader agreement for the lexicon was overall substantial to moderate, but it was lower for the descriptors for non-mass enhancement and enhancing asymmetry. Clinical relevance A common lexicon simplifies communication between specialists in clinical practice. The good inter-reader agreement confirms the effectiveness of the CEM-BIRADS in ensuring consistent communication. Detailed definitions of some descriptors (non-mass, enhancing asymmetry) are needed to ensure higher agreements.

摘要

目的

本研究旨在评估乳腺影像报告和数据系统(BI-RADS)对比增强乳腺X线摄影(CEM)词汇表在不同阅片者之间的一致性。

材料与方法

在这项经机构审查委员会(IRB)批准的单中心回顾性研究中,三名经验水平不同的乳腺放射科医生,根据乳腺X线摄影BI-RADS词汇表第五版和CEM的BI-RADS词汇表第一版,对421例常规临床CEM中的462个病灶进行了评估。阅片者对患者的预后情况不知情,并在低能量(LE)图像上评估乳腺和病灶特征(乳腺密度、病灶类型、相关的结构扭曲),在重组(RC)图像上评估病灶特征(强化类型、肿块强化特征、非肿块强化或强化不对称),并给出最终的BI-RADS评估。使用Fleiss卡方系数计算每个评估特征在不同阅片者之间的一致性。计算敏感性和特异性。

结果

对于乳腺密度(κ = 0.569)、LE图像上的病灶类型(κ = 0.654)和强化类型(κ = 0.664),不同阅片者之间的一致性为中等至高度。对于CEM肿块强化描述符存在中等至高度的一致性。对于非肿块强化和强化不对称描述符,一致性为一般至中等。LE以及LE与RC的BI-RADS评估在不同阅片者之间的一致性为中等(κ = 0.421)和一般(κ = 0.364)。所有阅片者的诊断性能良好且相当。

结论

CEM词汇表在大多数特征上,不同阅片者之间的一致性为中等至高度。对于一些RC描述符,如非肿块强化和强化不对称以及BI-RADS评估,一致性较低,但这并未影响诊断性能。

关键点

问题 缺少关于专门用于CEM的BI-RADS词汇表第一版再现性和不同阅片者之间一致性的数据。发现 词汇表在不同阅片者之间的一致性总体上为高度至中等,但非肿块强化和强化不对称描述符的一致性较低。临床意义 通用词汇表简化了临床实践中专家之间的沟通。良好的不同阅片者之间的一致性证实了CEM-BIRADS在确保一致沟通方面的有效性。需要对一些描述符(非肿块、强化不对称)进行详细定义以确保更高的一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815b/12021736/3b3ed16a5ef6/330_2024_11176_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验