Department of Chemistry, University of California-Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States.
Department of Chemistry, Edison-Lecks Laboratory, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.
Acc Chem Res. 2021 Feb 2;54(3):583-594. doi: 10.1021/acs.accounts.0c00781. Epub 2021 Jan 15.
From the venerable Robinson annulation to the irreplaceable Diels-Alder cycloaddition, annulation reactions have fueled the progression of the field of natural product synthesis throughout the past century. In broader terms, the ability to form a cyclic molecule directly from two or more simpler fragments has transformed virtually every aspect of the chemical sciences from the synthesis of organic materials to bioconjugation chemistry and drug discovery. In this Account, we describe the evolution of our meroterpene synthetic program over the past five years, enabled largely by the development of a tailored anionic annulation process for the synthesis of hydroxylated 1,3-cyclohexanediones from lithium enolates and the reactive β-lactone-containing feedstock chemical diketene.First, we provide details on short total syntheses of the prototypical polycyclic polyprenylated acylphloroglucinol (PPAP) natural products hyperforin and garsubellin A, which possess complex bicyclo[3.3.1]nonane architectures. Notably, these molecules have served as compelling synthetic targets for several decades and induce a number of biological effects of relevance to neuroscience and medicine. By merging our diketene annulation process with a hypervalent iodine-mediated oxidative ring expansion, bicyclo[3.3.1]nonane architectures can be easily prepared from simple 5,6-fused bicyclic diketones in only two chemical operations. Leveraging these two key chemical reactions in combination with various other stereoselective transformations allowed for these biologically active targets to be prepared in racemic form in only 10 steps.Next, we extend this strategy to the synthesis of complex fungal-derived meroterpenes generated biosynthetically from the coupling of 3,5-dimethylorsellinic acid (DMOA) and farnesyl pyrophosphate. A Ti(III)-mediated radical cyclization of a terminal epoxide was used to rapidly prepare a 6,6,5-fused tricyclic ketone which served as an input for our annulation/rearrangement process, ultimately enabling a total synthesis of protoaustinoid A, an important biosynthetic intermediate in DMOA-derived meroterpene synthesis, and its oxidation product berkeleyone A. Through a radical-based, abiotic rearrangement process, the bicyclo[3.3.1]nonane cores of these natural products could again be isomerized, resulting in the 6,5-fused ring systems of the andrastin family and ultimately delivering a total synthesis of andrastin D and preterrenoid. Notably, these isomerization transformations proved challenging when employing classic, acid-induced conditions for carbocation generation, thus highlighting the power of radical biomimicry in total synthesis. Finally, further oxidation and rearrangement allowed for access to terrenoid and the lactone-containing metabolite terretonin L.Overall, the merger of annulative diketene methodology with an oxidative rearrangement transformation has proven to be a broadly applicable strategy to synthesize bicyclo[3.3.1]nonane-containing natural products, a class of small molecules with over 1000 known members.
从令人尊敬的 Robinson 环化反应到不可替代的 Diels-Alder 环加成反应,环化反应推动了天然产物合成领域在过去一个世纪的发展。广义而言,能够直接从两个或更多更简单的片段形成环状分子,这一能力改变了化学科学的各个方面,从有机材料的合成到生物缀合化学和药物发现。在本报告中,我们描述了过去五年中我们混合萜类化合物合成计划的演变,这主要得益于为从锂烯醇化物和反应性β-内酰胺含有的原料二酮烯合成羟基化 1,3-环己二酮而开发的定制阴离子环加成工艺。首先,我们提供了典型的多环聚异戊二烯酰基间苯三酚(PPAP)天然产物胡椒酚和 garsubellin A 的简短全合成的详细信息,它们具有复杂的双环[3.3.1]壬烷结构。值得注意的是,这些分子作为几个十年的引人注目的合成目标,并诱导与神经科学和医学相关的许多生物学效应。通过将我们的二酮烯环加成工艺与高价碘介导的氧化环扩展相结合,双环[3.3.1]壬烷结构可以仅通过两个化学操作,从简单的 5,6-稠合双环二酮烯容易地制备。利用这两个关键化学反应与各种其他立体选择性转化相结合,使这些生物活性靶标能够以仅 10 步的非对映异构体形式制备。接下来,我们将该策略扩展到复杂真菌衍生的混合萜类化合物的合成中,这些化合物是通过 3,5-二甲基奥尔西啉酸(DMOA)和法呢基焦磷酸的偶联生物合成的。末端环氧化物的 Ti(III)介导的自由基环化反应用于快速制备 6,6,5-稠合的三环酮,它作为我们的环加成/重排过程的输入,最终实现了 protoaustinoid A 的全合成,这是 DMOA 衍生的混合萜类化合物合成中的一个重要生物合成中间体,以及其氧化产物伯克利酮 A。通过基于自由基的非生物重排过程,这些天然产物的双环[3.3.1]壬烷核可以再次异构化,导致andrastin 家族的 6,5-稠合环系统,并最终实现 andrastin D 和 preterrenoid 的全合成。值得注意的是,当采用经典的、酸诱导的碳正离子生成条件时,这些异构化转化具有挑战性,从而突出了自由基仿生学在全合成中的强大作用。最后,进一步的氧化和重排使我们能够获得terrenoide 和含有内酯的代谢物 terretonin L。总之,将环加成二酮烯方法与氧化重排转化相结合,已被证明是合成双环[3.3.1]壬烷类天然产物的一种广泛适用的策略,这类小分子有超过 1000 个已知成员。