Center for Innovation to Implementation, VA Palo Alto Health Care System, Menlo Park, California, USA.
Stanford-Surgery Policy Improvement Research and Education Center, Department of Surgery, Stanford University, Stanford, California, USA.
Health Serv Res. 2024 Aug;59(4):e14310. doi: 10.1111/1475-6773.14310. Epub 2024 Apr 24.
To examine the sensitivity of split-sample reliability estimates to the random split of the data and propose alternative methods for improving the stability of the split-sample method.
Data were simulated to reflect a variety of real-world quality measure distributions and scenarios. There is no date range to report as the data are simulated.
Simulation studies of split-sample reliability estimation were conducted under varying practical scenarios.
DATA COLLECTION/EXTRACTION METHODS: All data were simulated using functions in R.
Single split-sample reliability estimates can be very dependent on the random split of the data, especially in low sample size and low variability settings. Averaging split-sample estimates over many splits of the data can yield a more stable reliability estimate.
Measure developers and evaluators using the split-sample reliability method should average a series of reliability estimates calculated from many resamples of the data without replacement to obtain a more stable reliability estimate.
检验分半信度估计对数据随机分半的敏感性,并提出改进分半法稳定性的替代方法。
模拟数据以反映各种真实世界的质量测量分布和情况。由于数据是模拟的,因此没有要报告的日期范围。
在不同的实际情况下进行分半信度估计的模拟研究。
资料收集/提取方法:所有数据均使用 R 中的函数进行模拟。
单个分半信度估计值可能非常依赖于数据的随机分半,尤其是在样本量小和可变性低的情况下。通过对数据的许多重复分半计算分半估计值的平均值,可以得出更稳定的可靠性估计值。
使用分半信度法的测量开发者和评估者应平均计算多次不替换数据重复抽样的可靠性估计值,以获得更稳定的可靠性估计值。