Alempic Jean-Marie, Bisio Hugo, Villalta Alejandro, Santini Sébastien, Lartigue Audrey, Schmitt Alain, Bugnot Claire, Notaro Anna, Belmudes Lucid, Adrait Annie, Poirot Olivier, Ptchelkine Denis, De Castro Cristina, Couté Yohann, Abergel Chantal
Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale (IGS), Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B, IOM), 13288 Marseille Cedex 9, France.
Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy.
Microlife. 2024 Apr 5;5:uqae006. doi: 10.1093/femsml/uqae006. eCollection 2024.
The mimivirus 1.2 Mb genome was shown to be organized into a nucleocapsid-like genomic fiber encased in the nucleoid compartment inside the icosahedral capsid. The genomic fiber protein shell is composed of a mixture of two GMC-oxidoreductase paralogs, one of them being the main component of the glycosylated layer of fibrils at the surface of the virion. In this study, we determined the effect of the deletion of each of the corresponding genes on the genomic fiber and the layer of surface fibrils. First, we deleted the GMC-oxidoreductase, the most abundant in the genomic fiber, and determined its structure and composition in the mutant. As expected, it was composed of the second GMC-oxidoreductase and contained 5- and 6-start helices similar to the wild-type fiber. This result led us to propose a model explaining their coexistence. Then we deleted the GMC-oxidoreductase, the most abundant in the layer of fibrils, to analyze its protein composition in the mutant. Second, we showed that the fitness of single mutants and the double mutant were not decreased compared with the wild-type viruses under laboratory conditions. Third, we determined that deleting the GMC-oxidoreductase genes did not impact the glycosylation or the glycan composition of the layer of surface fibrils, despite modifying their protein composition. Because the glycosylation machinery and glycan composition of members of different clades are different, we expanded the analysis of the protein composition of the layer of fibrils to members of the B and C clades and showed that it was different among the three clades and even among isolates within the same clade. Taken together, the results obtained on two distinct central processes (genome packaging and virion coating) illustrate an unexpected functional redundancy in members of the family , suggesting this may be the major evolutionary force behind their giant genomes.
米米病毒1.2 Mb的基因组被证明是由一种类核衣壳基因组纤维组成,该纤维包裹在二十面体衣壳内的类核区室中。基因组纤维蛋白外壳由两种GMC氧化还原酶旁系同源物的混合物组成,其中一种是病毒粒子表面纤维状糖基化层的主要成分。在本研究中,我们确定了每个相应基因的缺失对基因组纤维和表面纤维层的影响。首先,我们删除了基因组纤维中含量最丰富的GMC氧化还原酶,并确定了其在突变体中的结构和组成。正如预期的那样,它由第二种GMC氧化还原酶组成,并包含与野生型纤维相似的5股和6股螺旋。这一结果使我们提出了一个解释它们共存的模型。然后,我们删除了纤维层中含量最丰富的GMC氧化还原酶,以分析其在突变体中的蛋白质组成。其次,我们表明,在实验室条件下,单突变体和双突变体的适应性与野生型病毒相比没有降低。第三,我们确定,删除GMC氧化还原酶基因不会影响表面纤维层的糖基化或聚糖组成,尽管会改变其蛋白质组成。由于不同进化枝成员的糖基化机制和聚糖组成不同,我们将纤维层蛋白质组成的分析扩展到B和C进化枝的成员,并表明这三个进化枝之间甚至同一进化枝内的分离株之间都存在差异。综上所述,在两个不同的核心过程(基因组包装和病毒粒子包膜)上获得的结果说明了该家族成员中意想不到的功能冗余,这表明这可能是其巨大基因组背后的主要进化力量。