Suppr超能文献

使用纵向感知分割网络对儿科霍奇金淋巴瘤患者的PET/CT序列图像进行自动定量分析。

Automatic Quantification of Serial PET/CT Images for Pediatric Hodgkin Lymphoma Patients Using a Longitudinally-Aware Segmentation Network.

作者信息

Tie Xin, Shin Muheon, Lee Changhee, Perlman Scott B, Huemann Zachary, Weisman Amy J, Castellino Sharon M, Kelly Kara M, McCarten Kathleen M, Alazraki Adina L, Hu Junjie, Cho Steve Y, Bradshaw Tyler J

机构信息

Department of Radiology, University of Wisconsin, Madison, WI, USA.

Department of Medical Physics, University of Wisconsin, Madison, WI, USA.

出版信息

ArXiv. 2024 Oct 1:arXiv:2404.08611v2.

Abstract

PURPOSE

Automatic quantification of longitudinal changes in PET scans for lymphoma patients has proven challenging, as residual disease in interim-therapy scans is often subtle and difficult to detect. Our goal was to develop a longitudinally-aware segmentation network (LAS-Net) that can quantify serial PET/CT images for pediatric Hodgkin lymphoma patients.

MATERIALS AND METHODS

This retrospective study included baseline (PET1) and interim (PET2) PET/CT images from 297 patients enrolled in two Children's Oncology Group clinical trials (AHOD1331 and AHOD0831). LAS-Net incorporates longitudinal cross-attention, allowing relevant features from PET1 to inform the analysis of PET2. Model performance was evaluated using Dice coefficients for PET1 and detection F1 scores for PET2. Additionally, we extracted and compared quantitative PET metrics, including metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in PET1, as well as qPET and ΔSUVmax in PET2, against physician measurements. We quantified their agreement using Spearman's correlations and employed bootstrap resampling for statistical analysis.

RESULTS

LAS-Net detected residual lymphoma in PET2 with an F1 score of 0.606 (precision/recall: 0.615/0.600), outperforming all comparator methods (P<0.01). For baseline segmentation, LAS-Net achieved a mean Dice score of 0.772. In PET quantification, LAS-Net's measurements of qPET, ΔSUVmax, MTV and TLG were strongly correlated with physician measurements, with Spearman's of 0.78, 0.80, 0.93 and 0.96, respectively. The quantification performance remained high, with a slight decrease, in an external testing cohort.

CONCLUSION

LAS-Net demonstrated significant improvements in quantifying PET metrics across serial scans, highlighting the value of longitudinal awareness in evaluating multi-time-point imaging datasets.

摘要

目的

事实证明,对淋巴瘤患者的PET扫描进行纵向变化的自动量化具有挑战性,因为中期治疗扫描中的残留疾病通常很细微且难以检测。我们的目标是开发一种纵向感知分割网络(LAS-Net),该网络可以对儿童霍奇金淋巴瘤患者的系列PET/CT图像进行量化。

材料与方法

这项回顾性研究纳入了参与两项儿童肿瘤学组临床试验(AHOD1331和AHOD0831)的297例患者的基线(PET1)和中期(PET2)PET/CT图像。LAS-Net纳入了纵向交叉注意力,使PET1的相关特征能够为PET2的分析提供信息。使用PET1的Dice系数和PET2的检测F1分数评估模型性能。此外,我们提取并比较了定量PET指标,包括PET1中的代谢肿瘤体积(MTV)和总病变糖酵解(TLG),以及PET2中的qPET和ΔSUVmax,并与医生的测量结果进行比较。我们使用Spearman相关性对它们的一致性进行量化,并采用Bootstrap重采样进行统计分析。

结果

LAS-Net在PET2中检测残留淋巴瘤的F1分数为0.606(精确率/召回率:0.615/0.600),优于所有比较方法(P<0.01)。对于基线分割,LAS-Net的平均Dice分数为0.772。在PET量化中,LAS-Net对qPET、ΔSUVmax、MTV和TLG的测量与医生的测量结果高度相关,Spearman相关性分别为0.78、0.80、0.93和0.96。在外部测试队列中,量化性能仍然很高,略有下降。

结论

LAS-Net在量化系列扫描中的PET指标方面显示出显著改进,突出了纵向感知在评估多时间点成像数据集方面的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7fd/11487591/5ce6ba22b82e/nihpp-2404.08611v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验