Kyratzi Panagiota, Matika Oswald, Brassington Amey H, Clare Connie E, Xu Juan, Barrett David A, Emes Richard D, Archibald Alan L, Paldi Andras, Sinclair Kevin D, Wattis Jonathan, Rauch Cyril
School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
École Pratique des Hautes Études, PSL Research University, St-Antoine Research Center, Inserm U938, 34 rue Crozatier, 75012 Paris, France.
bioRxiv. 2024 Aug 13:2024.04.16.589524. doi: 10.1101/2024.04.16.589524.
Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) extract information using averages and variances from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated, the investigative power of such methodologies is limited. Genomic Informational Field Theory (GIFT) is a method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Whilst GWAS determines the extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different datasets obtained in related to bone growth (Dataset-1) and to a series of linked metabolic and epigenetic pathways (Dataset-2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked.
识别表型与基因型之间的关联是基因分析的根本基础。受频率论概率和R.A.费希尔工作的启发,全基因组关联研究(GWAS)利用基因型 - 表型数据集的均值和方差来提取信息。均值和方差在创建通过将数据分组到类别中获得的分布密度函数时是合理的。然而,由于给定类别内的数据无法区分,此类方法的研究能力有限。基因组信息场理论(GIFT)是一种专门设计用于规避此问题的方法。GIFT的进行方式与GWAS相反。虽然GWAS确定基因参与表型形成的程度(自下而上的方法),但GIFT确定表型为其生存选择微状态(基因)的程度(自上而下的方法)。这样做需要处理新的遗传概念,即遗传路径,据此可以确定基因型 - 表型关联的显著性水平。通过使用与骨骼生长相关的不同数据集(数据集1)以及一系列相关的代谢和表观遗传途径(数据集2),我们证明消除与类别相关的信息障碍可增强GIFT的研究和判别能力,即GIFT比GWAS提取更多信息。我们最后建议GIFT是研究表型可塑性和遗传同化如何关联的合适工具。