Ezhumalai Ganesan, Arun Muthukrishnan, Manavalan Arulmani, Rajkumar Renganathan, Heese Klaus
Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
Department of Biotechnology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
Microb Ecol. 2024 Apr 25;87(1):61. doi: 10.1007/s00248-024-02376-1.
Emissions from transportation and industry primarily cause global warming, leading to floods, glacier melt, and rising seas. Widespread greenhouse gas emissions and resulting global warming pose significant risks to the environment, economy, and society. The need for alternative fuels drives the development of third-generation feedstocks: microalgae, seaweed, and cyanobacteria. These microalgae offer traits like rapid growth, high lipid content, non-competition with human food, and growth on non-arable land using brackish or waste water, making them promising for biofuel. These unique phototrophic organisms use sunlight, water, and carbon dioxide (CO) to produce biofuels, biochemicals, and more. This review delves into the realm of microalgal biofuels, exploring contemporary methodologies employed for lipid extraction, significant value-added products, and the challenges inherent in their commercial-scale production. While the cost of microalgae bioproducts remains high, utilizing wastewater nutrients for cultivation could substantially cut production costs. Furthermore, this review summarizes the significance of biocircular economy approaches, which encompass the utilization of microalgal biomass as a feed supplement and biofertilizer, and biosorption of heavy metals and dyes. Besides, the discussion extends to the in-depth analysis and future prospects on the commercial potential of biofuel within the context of sustainable development. An economically efficient microalgae biorefinery should prioritize affordable nutrient inputs, efficient harvesting techniques, and the generation of valuable by-products.
交通运输和工业排放是全球变暖的主要原因,导致洪水、冰川融化和海平面上升。广泛的温室气体排放以及由此导致的全球变暖对环境、经济和社会构成了重大风险。对替代燃料的需求推动了第三代原料的发展:微藻、海藻和蓝细菌。这些微藻具有生长迅速、脂质含量高、不与人类食物竞争以及可利用微咸水或废水在非耕地上生长等特点,使其成为生物燃料的理想选择。这些独特的光合生物利用阳光、水和二氧化碳来生产生物燃料、生化产品等。本文综述深入探讨了微藻生物燃料领域,探索了用于脂质提取的当代方法、重要的增值产品以及其商业规模生产中固有的挑战。虽然微藻生物产品的成本仍然很高,但利用废水养分进行养殖可以大幅降低生产成本。此外,本文综述总结了生物循环经济方法的重要性,其中包括将微藻生物质用作饲料补充剂和生物肥料,以及对重金属和染料的生物吸附。此外,讨论还扩展到在可持续发展背景下对生物燃料商业潜力的深入分析和未来前景。一个经济高效的微藻生物精炼厂应优先考虑价格合理的养分输入、高效的收获技术以及有价值副产品的产生。