Suppr超能文献

用于神经形态计算的PbHfO铁电忆阻器的突触特性

Synaptic Properties of a PbHfO Ferroelectric Memristor for Neuromorphic Computing.

作者信息

Huang Wen-Yuan, Nie Ling-Hui, Lai Xi-Cai, Fang Jun-Lin, Chen Zhi-Long, Chen Jia-Ying, Jiang Yan-Ping, Tang Xin-Gui

机构信息

School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.

Children's Behavioral Development Rehabilitation Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.

出版信息

ACS Appl Mater Interfaces. 2024 May 8;16(18):23615-23624. doi: 10.1021/acsami.4c03435. Epub 2024 Apr 25.

Abstract

The conventional von Neumann architecture has proven to be inadequate in keeping up with the rapid progress in artificial intelligence. Memristors have become the favored devices for simulating synaptic behavior and enabling neuromorphic computations to address challenges. An artificial synapse utilizing the perovskite structure PbHfO (PHO) has been created to tackle these concerns. By employing the sol-gel technique, a ferroelectric film composed of Au/PHO/FTO was created on FTO/glass for the purpose of this endeavor. The artificial synapse is composed of Au/PHO/FTO and exhibits learning and memory characteristics that are similar to those observed in biological neurons. The recognition accuracy for both MNIST and Fashion-MNIST data sets saw an increase, reaching 92.93% and 76.75%, respectively. This enhancement resulted from employing a convolutional neural network architecture and implementing an improved stochastic adaptive algorithm. The presented findings showcase a viable approach to achieve neuromorphic computation by employing artificial synapses fabricated with PHO.

摘要

传统的冯·诺依曼架构已被证明不足以跟上人工智能的快速发展。忆阻器已成为模拟突触行为和实现神经形态计算以应对挑战的首选器件。为解决这些问题,已创建了一种利用钙钛矿结构PbHfO(PHO)的人工突触。通过采用溶胶 - 凝胶技术,为此目的在FTO/玻璃上制备了由Au/PHO/FTO组成的铁电薄膜。该人工突触由Au/PHO/FTO组成,具有与生物神经元中观察到的相似的学习和记忆特性。MNIST和Fashion-MNIST数据集的识别准确率均有所提高,分别达到92.93%和76.75%。这种提高是通过采用卷积神经网络架构和实施改进的随机自适应算法实现的。所呈现的研究结果展示了一种通过采用用PHO制造的人工突触来实现神经形态计算的可行方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验