Suppr超能文献

用于全新蛋白质设计的生成式人工智能。

Generative artificial intelligence for de novo protein design.

作者信息

Winnifrith Adam, Outeiral Carlos, Hie Brian L

机构信息

Department of Biochemistry, University of Oxford, South Parks Rd, Oxford, OX1 3QU, United Kingdom; Evolvere Biosciences, Innovation Building, Old Road Campus, Oxford, OX3 7FZ, United Kingdom.

Department of Statistics, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, United Kingdom.

出版信息

Curr Opin Struct Biol. 2024 Jun;86:102794. doi: 10.1016/j.sbi.2024.102794. Epub 2024 Apr 24.

Abstract

Engineering new molecules with desirable functions and properties has the potential to extend our ability to engineer proteins beyond what nature has so far evolved. Advances in the so-called 'de novo' design problem have recently been brought forward by developments in artificial intelligence. Generative architectures, such as language models and diffusion processes, seem adept at generating novel, yet realistic proteins that display desirable properties and perform specified functions. State-of-the-art design protocols now achieve experimental success rates nearing 20%, thus widening the access to de novo designed proteins. Despite extensive progress, there are clear field-wide challenges, for example, in determining the best in silico metrics to prioritise designs for experimental testing, and in designing proteins that can undergo large conformational changes or be regulated by post-translational modifications. With an increase in the number of models being developed, this review provides a framework to understand how these tools fit into the overall process of de novo protein design. Throughout, we highlight the power of incorporating biochemical knowledge to improve performance and interpretability.

摘要

设计具有理想功能和特性的新分子,有可能扩展我们对蛋白质进行工程改造的能力,超越目前自然界所进化出的水平。人工智能的发展最近推动了所谓“从头设计”问题的进展。生成式架构,如语言模型和扩散过程,似乎擅长生成具有理想特性并能执行特定功能的新颖且现实的蛋白质。目前最先进的设计方案实验成功率接近20%,从而拓宽了获得从头设计蛋白质的途径。尽管取得了广泛进展,但仍存在明显的全领域挑战,例如,确定用于优先选择实验测试设计的最佳计算机模拟指标,以及设计能够经历大的构象变化或受翻译后修饰调控的蛋白质。随着所开发模型数量的增加,本综述提供了一个框架,以理解这些工具如何融入从头蛋白质设计的整体过程。在整个过程中,我们强调整合生化知识以提高性能和可解释性的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验