Suppr超能文献

从头设计蛋白质——从新结构到可编程功能。

De novo protein design-From new structures to programmable functions.

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.

出版信息

Cell. 2024 Feb 1;187(3):526-544. doi: 10.1016/j.cell.2023.12.028.

Abstract

Methods from artificial intelligence (AI) trained on large datasets of sequences and structures can now "write" proteins with new shapes and molecular functions de novo, without starting from proteins found in nature. In this Perspective, I will discuss the state of the field of de novo protein design at the juncture of physics-based modeling approaches and AI. New protein folds and higher-order assemblies can be designed with considerable experimental success rates, and difficult problems requiring tunable control over protein conformations and precise shape complementarity for molecular recognition are coming into reach. Emerging approaches incorporate engineering principles-tunability, controllability, and modularity-into the design process from the beginning. Exciting frontiers lie in deconstructing cellular functions with de novo proteins and, conversely, constructing synthetic cellular signaling from the ground up. As methods improve, many more challenges are unsolved.

摘要

现在,基于人工智能的方法可以使用大型序列和结构数据集“编写”具有新形状和分子功能的蛋白质,而无需从自然界中发现的蛋白质开始。在这篇观点文章中,我将讨论基于物理建模方法和人工智能的从头设计蛋白质领域的现状。可以相当高的实验成功率来设计新的蛋白质折叠和更高阶的组装体,并且越来越能够解决需要对蛋白质构象进行可调控制和精确形状互补以进行分子识别的难题。新兴的方法从一开始就将工程原理——可调性、可控性和模块化——纳入设计过程。激动人心的前沿领域在于使用从头设计的蛋白质来解构细胞功能,反之,从基础构建合成细胞信号。随着方法的改进,还有许多挑战尚未解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35bf/10990048/10584cf5f4e1/nihms-1963347-f0001.jpg

相似文献

引用本文的文献

1
Chemoenzymatic cascade depolymerization of plastics.塑料的化学酶级联解聚
Commun Chem. 2025 Sep 9;8(1):272. doi: 10.1038/s42004-025-01679-9.
3
Editorial: Fusion proteins for the detection of pathogens or pathogen receptors.社论:用于检测病原体或病原体受体的融合蛋白
Front Bioeng Biotechnol. 2025 Jul 29;13:1660729. doi: 10.3389/fbioe.2025.1660729. eCollection 2025.

本文引用的文献

1
Exploring "dark-matter" protein folds using deep learning.利用深度学习探索“暗物质”蛋白折叠。
Cell Syst. 2024 Oct 16;15(10):898-910.e5. doi: 10.1016/j.cels.2024.09.006. Epub 2024 Oct 8.
7
Illuminating protein space with a programmable generative model.用可编程生成模型照亮蛋白质空间。
Nature. 2023 Nov;623(7989):1070-1078. doi: 10.1038/s41586-023-06728-8. Epub 2023 Nov 15.
9
Predicting multiple conformations via sequence clustering and AlphaFold2.通过序列聚类和AlphaFold2预测多种构象
Nature. 2024 Jan;625(7996):832-839. doi: 10.1038/s41586-023-06832-9. Epub 2023 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验