Suppr超能文献

基于影像组学模型与非影像组学模型术前诊断单发肝细胞癌微血管侵犯的准确性比较:一项系统评价和荟萃分析。

The Diagnostic Accuracy Between Radiomics Model and Non-radiomics Model for Preoperative of Microvascular Invasion of Solitary Hepatocellular Carcinoma: A Systematic Review and Meta-analysis.

机构信息

The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China.

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.

出版信息

Acad Radiol. 2024 Nov;31(11):4419-4433. doi: 10.1016/j.acra.2024.04.003. Epub 2024 Apr 24.

Abstract

RATIONALE AND OBJECTIVES

Microvascular invasion (MVI) is a key prognostic factor for hepatocellular carcinoma (HCC). The predictive models for solitary HCC could potentially integrate more comprehensive tumor information. Owing to the diverse findings across studies, we aimed to compare radiomic and non-radiomic methods for preoperative MVI detection in solitary HCC.

MATERIALS AND METHODS

Articles were reviewed from databases including PubMed, Embase, Web of Science, and the Cochrane Library until April 7, 2023. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model within a 95% confidence interval (CI). Diagnostic accuracy was assessed using summary receiver-operating characteristic curves and the area under the curve (AUC). Meta-regression and Z-tests identified heterogeneity and compared the predictive accuracy. Subgroup analyses were performed to compare the AUC of two methods according to study type, study design, tumor size, modeling methods, and imaging modality.

RESULTS

The analysis incorporated 26 studies involving 3539 patients with solitary HCC. The radiomics models showed a pooled sensitivity and specificity of 0.79 (95%CI: 0.72-0.85) and 0.78 (95%CI: 0.73-0.82), with an AUC at 0.85 (95%CI: 0.82-0.88). Conversely, the non-radiomics models had sensitivity and specificity of 0.74 (95%CI: 0.65-0.81) and 0.88 (95%CI: 0.82-0.92) and an AUC of 0.88 (95%CI: 0.85-0.91). Subgroups with preoperative MRI, larger tumors, and functional imaging had higher accuracy than those using preoperative CT, smaller tumors, and conventional imaging.

CONCLUSION

Non-radiomic methods outperformed radiomic methods, but high heterogeneity calls across studies for cautious interpretation.

摘要

背景与目的

微血管侵犯(MVI)是肝细胞癌(HCC)的一个关键预后因素。对于单发 HCC,预测模型可能可以整合更全面的肿瘤信息。由于研究结果各不相同,我们旨在比较针对单发 HCC 术前 MVI 检测的影像组学和非影像组学方法。

材料与方法

从 PubMed、Embase、Web of Science 和 Cochrane Library 等数据库中检索文献,检索时间截至 2023 年 4 月 7 日。使用随机效应模型计算汇总敏感性、特异性、阳性似然比(PLR)和阴性似然比(NLR),置信区间(CI)为 95%。使用汇总受试者工作特征曲线和曲线下面积(AUC)评估诊断准确性。Meta 回归和 Z 检验用于识别异质性并比较预测准确性。进行亚组分析,以根据研究类型、研究设计、肿瘤大小、建模方法和成像方式比较两种方法的 AUC。

结果

该分析纳入了 26 项涉及 3539 例单发 HCC 患者的研究。影像组学模型的汇总敏感性和特异性分别为 0.79(95%CI:0.72-0.85)和 0.78(95%CI:0.73-0.82),AUC 为 0.85(95%CI:0.82-0.88)。相比之下,非影像组学模型的敏感性和特异性分别为 0.74(95%CI:0.65-0.81)和 0.88(95%CI:0.82-0.92),AUC 为 0.88(95%CI:0.85-0.91)。术前 MRI、较大肿瘤和功能成像的亚组比使用术前 CT、较小肿瘤和常规成像的亚组具有更高的准确性。

结论

非影像组学方法优于影像组学方法,但由于研究之间存在高度异质性,需要谨慎解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验