Suppr超能文献

CT 放射组学预测肝细胞癌微血管侵犯:系统评价和荟萃分析。

CT radiomics for prediction of microvascular invasion in hepatocellular carcinoma: A systematic review and meta-analysis.

机构信息

Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan, China.

Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan, China; Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Clinics (Sao Paulo). 2023 Aug 8;78:100264. doi: 10.1016/j.clinsp.2023.100264. eCollection 2023.

Abstract

The power of computed tomography (CT) radiomics for preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) demonstrated in current research is variable. This systematic review and meta-analysis aim to evaluate the value of CT radiomics for MVI prediction in HCC, and to investigate the methodologic quality in the workflow of radiomics research. Databases of PubMed, Embase, Web of Science, and Cochrane Library were systematically searched. The methodologic quality of included studies was assessed. Validation data from studies with Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement type 2a or above were extracted for meta-analysis. Eleven studies were included, among which nine were eligible for meta-analysis. Radiomics quality scores of the enrolled eleven studies varied from 6 to 17, accounting for 16.7%-47.2% of the total points, with an average score of 14. Pooled sensitivity, specificity, and Area Under the summary receiver operator Characteristic Curve (AUC) were 0.82 (95% CI 0.77-0.86), 0.79 (95% CI 0.75-0.83), and 0.87 (95% CI 0.84-0.91) for the predictive performance of CT radiomics, respectively. Meta-regression and subgroup analyses showed radiomics model based on 3D tumor segmentation, and deep learning model achieved superior performances compared to 2D segmentation and non-deep learning model, respectively (AUC: 0.93 vs. 0.83, and 0.97 vs. 0.83, respectively). This study proves that CT radiomics could predict MVI in HCC. The heterogeneity of the included studies precludes a definition of the role of CT radiomics in predicting MVI, but methodology warrants uniformization in the radiology community regarding radiomics in HCC.

摘要

计算机断层扫描 (CT) 放射组学在当前研究中对肝细胞癌 (HCC) 微血管侵犯 (MVI) 的术前预测具有不同的作用。本系统评价和荟萃分析旨在评估 CT 放射组学在 HCC 中预测 MVI 的价值,并探讨放射组学研究工作流程中的方法学质量。系统检索了 PubMed、Embase、Web of Science 和 Cochrane Library 数据库。评估了纳入研究的方法学质量。从符合透明报告多变量预测模型个体预后或诊断(TRIPOD)声明 2a 或以上类型的研究中提取验证数据进行荟萃分析。共纳入 11 项研究,其中 9 项符合荟萃分析条件。纳入的 11 项研究的放射组学质量评分从 6 到 17 不等,占总分的 16.7%-47.2%,平均得分为 14。CT 放射组学预测性能的汇总敏感性、特异性和曲线下面积(AUC)分别为 0.82(95%置信区间 0.77-0.86)、0.79(95%置信区间 0.75-0.83)和 0.87(95%置信区间 0.84-0.91)。Meta 回归和亚组分析表明,基于 3D 肿瘤分割的放射组学模型和深度学习模型的表现优于 2D 分割和非深度学习模型(AUC:0.93 与 0.83,0.97 与 0.83)。本研究证明 CT 放射组学可预测 HCC 的 MVI。纳入研究的异质性使得无法确定 CT 放射组学在预测 MVI 中的作用,但放射学领域在 HCC 中的放射组学方法学需要统一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd6/10432601/20bdfe84e0f0/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验