Suppr超能文献

日本老年人口长期护理需求认证前基洪检查表评分的上升。一项9年的回顾性研究。

Escalation on Kihon Checklist Scores Preceding the Certification of Long-Term Care Need in the Older Population in Japan. A 9-Year Retrospective Study.

作者信息

Kitazawa Kazuki, Tsuchiya Kenji, Hirao Kazuki, Furukawa Tomomi, Tozato Fusae, Iwaya Tsutomu, Mitsui Shinichi

机构信息

Department of Rehabilitation, Faculty of Health Sciences, Nagano University of Health and Medicine, Nagano, Japan.

Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan.

出版信息

Health Serv Res Manag Epidemiol. 2024 Apr 24;11:23333928241247027. doi: 10.1177/23333928241247027. eCollection 2024 Jan-Dec.

Abstract

OBJECTIVES

The Kihon Checklist (KCL) is valuable for predicting long-term care (LTC) certification. However, the precise association between KCL scores and the temporal dynamics of LTC need certification remains unclear. This study clarified the characteristic trajectory of KCL scores in individuals certified for LTC need.

METHODS

The KCL scores spanning from 2011 to 2019 were obtained from 5630 older individuals, including those certified for LTC need in November 2020, in Iiyama City, Nagano, Japan. We analyzed the KCL score trajectories using a linear mixed model, both before and after propensity score matching.

RESULTS

Throughout the 9-year observation period, the KCL scores consistently remained higher in the certified group compared to the non-certified group. Notably, a significant score increase occurred within the 3 years preceding LTC certification.

DISCUSSION

Our findings highlight the effectiveness of continuous surveillance using the KCL in identifying individuals likely to require LTC within a few years.

摘要

目的

基宏检查表(KCL)对于预测长期护理(LTC)认证很有价值。然而,KCL评分与LTC需求认证的时间动态之间的确切关联仍不清楚。本研究阐明了LTC需求认证个体的KCL评分特征轨迹。

方法

从日本长野县饭山市的5630名老年人中获取了2011年至2019年的KCL评分,其中包括2020年11月认证为有LTC需求的个体。我们在倾向得分匹配前后,使用线性混合模型分析了KCL评分轨迹。

结果

在整个9年的观察期内,认证组的KCL评分始终高于未认证组。值得注意的是,在LTC认证前3年内,评分显著增加。

讨论

我们的研究结果强调了使用KCL进行持续监测在识别几年内可能需要LTC的个体方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9677/11044799/2916189e6bd6/10.1177_23333928241247027-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验