Cederbaum Lorenz S, Fedyk Jacqueline
Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
Commun Phys. 2023;6(1):111. doi: 10.1038/s42005-023-01227-8. Epub 2023 May 22.
The interaction of atoms and molecules with quantum light as realized in cavities has become a highly topical and fast growing research field. This interaction leads to hybrid light-matter states giving rise to new phenomena and opening up pathways to control and manipulate properties of the matter. Here, we substantially extend the scope of the interaction by allowing free electrons to enter the cavity and merge and unify the two active fields of electron scattering and quantum-light-matter interaction. In the presence of matter, hybrid metastable states are formed at electron energies of choice. The properties of these states depend strongly on the frequency and on the light-matter coupling of the cavity. The incoming electrons can be captured by the matter inside the cavity solely due to the presence of the cavity. The findings are substantiated by an explicit example and general consequences are discussed.
原子和分子与腔内实现的量子光之间的相互作用已成为一个极具热点且快速发展的研究领域。这种相互作用导致形成混合光物质态,引发新现象,并开辟了控制和操纵物质性质的途径。在这里,我们通过允许自由电子进入腔体,大幅扩展了相互作用的范围,并将电子散射和量子光物质相互作用这两个活跃领域融合统一。在有物质存在的情况下,在选定的电子能量处形成混合亚稳态。这些态的性质强烈依赖于频率以及腔体的光物质耦合。仅由于腔体的存在,入射电子就能被腔内的物质捕获。通过一个具体例子证实了这些发现,并讨论了一般结果。