Suppr超能文献

眼生物测量和光学参数变化对屈光不正差异的影响。

The influence of variations in ocular biometric and optical parameters on differences in refractive error.

机构信息

Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, Antwerp University, Wilrijk, Belgium.

Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.

出版信息

Ophthalmic Physiol Opt. 2024 Jul;44(5):1000-1009. doi: 10.1111/opo.13318. Epub 2024 Apr 26.

Abstract

PURPOSE

To present a paraxial method to estimate the influence of variations in ocular biometry on changes in refractive error (S) at a population level and apply this method to literature data.

METHODS

Error propagation was applied to two methods of eye modelling, referred to as the simple method and the matrix method. The simple method defines S as the difference between the axial power and the whole-eye power, while the matrix method uses more accurate ray transfer matrices. These methods were applied to literature data, containing the mean ocular biometry data from the SyntEyes model, as well as populations of premature infants with or without retinopathy, full-term infants, school children and healthy and diabetic adults.

RESULTS

Applying these equations to 1000 SyntEyes showed that changes in axial length provided the most important contribution to the variations in refractive error (57%-64%), followed by lens power/gradient index power (16%-31%) and the anterior corneal radius of curvature (10%-13%). All other components of the eye contributed <4%. For young children, the largest contributions were made by variations in axial length, lens and corneal power for the simple method (67%, 23% and 8%, respectively) and by variations in axial length, gradient lens power and anterior corneal curvature for the matrix method (55%, 21% and 14%, respectively). During myopisation, the influence of variations in axial length increased from 54.5% to 73.4%, while changes in corneal power decreased from 9.82% to 6.32%. Similarly, for the other data sets, the largest contribution was related to axial length.

CONCLUSIONS

This analysis confirms that the changes in ocular refraction were mostly associated with variations in axial length, lens and corneal power. The relative contributions of the latter two varied, depending on the particular population.

摘要

目的

提出一种傍轴方法来估计眼部生物测量学的变化对人群水平的屈光误差(S)的影响,并将该方法应用于文献数据。

方法

误差传播应用于两种眼模型方法,称为简单方法和矩阵方法。简单方法将 S 定义为轴向力与整个眼力之间的差异,而矩阵方法使用更准确的光线传输矩阵。这些方法应用于文献数据,包括 SyntEyes 模型的平均眼部生物测量数据,以及患有或不患有视网膜病变的早产儿、足月婴儿、学童、健康和糖尿病成年人的人群。

结果

将这些方程应用于 1000 个 SyntEyes 显示,眼轴长度的变化对视光误差的变化贡献最大(57%-64%),其次是晶状体功率/梯度指数功率(16%-31%)和前角膜曲率半径(10%-13%)。眼睛的所有其他组成部分的贡献都<4%。对于幼儿,简单方法中轴向长度、晶状体和角膜功率的变化贡献最大(分别为 67%、23%和 8%),而矩阵方法中轴向长度、梯度晶状体功率和前角膜曲率的变化贡献最大(分别为 55%、21%和 14%)。在近视发生期间,眼轴长度变化的影响从 54.5%增加到 73.4%,而角膜功率的变化从 9.82%减少到 6.32%。同样,对于其他数据集,最大的贡献与眼轴长度有关。

结论

该分析证实,眼球屈光度的变化主要与眼轴长度、晶状体和角膜功率的变化有关。后两者的相对贡献因特定人群而异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验