Suppr超能文献

压电驱动微型机器人的开发与改进

Development and Improvement of a Piezoelectrically Driven Miniature Robot.

作者信息

Wu Guangping, Wang Ziyang, Wu Yuting, Zhao Jiaxin, Cui Feng, Zhang Yichen, Chen Wenyuan

机构信息

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China.

Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Biomimetics (Basel). 2024 Apr 9;9(4):226. doi: 10.3390/biomimetics9040226.

Abstract

In this paper, we proposed a miniature quadrupedal piezoelectric robot with a mass of 1.8 g and a body length of 4.6 cm. The robot adopts a novel spatial parallel mechanism as its transmission. Each leg of the robot has two degrees of freedom (DOFs): swing and lift. The trajectory necessary for walking is achieved by the appropriate phasing of these two DOFs. A new manufacturing method for piezoelectric actuators was developed. During the stacking process, discrete patterned PZT pieces are used to avoid dielectric failure caused by laser cutting. Copper-clad FR-4 is used as the solder pad instead of copper foil, making the connection between the pad and the actuator more reliable. The lift powertrain of the robot was modeled and the link length of the powertrain was optimized based on the model. The maximum output force of each leg can reach 26 mN under optimized design parameters, which is 1.38 times the required force for successful walking. The frequency response of the powertrain was measured and fitted to the second-order system, which enabled increased leg amplitudes near the powertrain resonance of approximately 70 Hz with adjusted drive signals. The maximum speed of the robot without load reached 48.66 cm/s (10.58 body lengths per second) and the payload capacity can reach 5.5 g (3.05 times its mass) near the powertrain resonance.

摘要

在本文中,我们提出了一种微型四足压电机器人,其质量为1.8克,体长为4.6厘米。该机器人采用一种新颖的空间并联机构作为其传动装置。机器人的每条腿有两个自由度:摆动和抬起。行走所需的轨迹通过这两个自由度的适当相位实现。开发了一种用于压电致动器的新制造方法。在堆叠过程中,使用离散图案化的PZT片来避免激光切割引起的介电故障。使用覆铜FR-4作为焊盘代替铜箔,使焊盘与致动器之间的连接更可靠。对机器人的抬起动力系统进行了建模,并基于该模型对动力系统的连杆长度进行了优化。在优化的设计参数下,每条腿的最大输出力可达到26毫牛,这是成功行走所需力的1.38倍。测量了动力系统的频率响应并将其拟合到二阶系统,通过调整驱动信号,在动力系统共振频率约70赫兹附近可增加腿部振幅。机器人在无负载时的最大速度达到48.66厘米/秒(每秒10.58个身体长度),在动力系统共振附近,其Payload容量可达到5.5克(其质量的3.05倍)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbfc/11048175/14bcb5573829/biomimetics-09-00226-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验