Chen Mouyixing, Yu Guo, Qiu Hui, Jiang Pingping, Zhong Xuemei, Liu Jie
College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
Metabolites. 2024 Apr 18;14(4):231. doi: 10.3390/metabo14040231.
Heavy metal pollution poses significant environmental challenges, and understanding how plants and endophytic bacteria interact to mitigate these challenges is of utmost importance. In this study, we investigated the roles of endophytic bacteria, particularly and , in Swartz () in response to chromium and nickel co-pollution. Our results demonstrated the remarkable tolerance of and to heavy metals, and their potential to become dominant species in the presence of co-pollution. We observed a close relationship between these endophytic bacteria and the significant differences in metabolites, particularly carbohydrates, flavonoids, and amino acids in . These findings shed light on the potential of endophytic bacteria to promote the production of aspartic acid and other metabolites in plants as a response to abiotic stressors. Furthermore, our study presents a new direction for plant and bioremediation strategies in heavy metal pollution and enhances our understanding of 's mechanisms for heavy metal tolerance.
重金属污染带来了重大的环境挑战,了解植物与内生细菌如何相互作用以应对这些挑战至关重要。在本研究中,我们调查了内生细菌,特别是[具体细菌名称1]和[具体细菌名称2],在[植物名称](Swartz)应对铬和镍共同污染时所起的作用。我们的结果表明[具体细菌名称1]和[具体细菌名称2]对重金属具有显著的耐受性,并且在共同污染存在的情况下它们有成为优势物种的潜力。我们观察到这些内生细菌与[植物名称]中代谢物的显著差异之间存在密切关系,特别是碳水化合物、黄酮类化合物和氨基酸。这些发现揭示了内生细菌在促进植物中天冬氨酸和其他代谢物产生以应对非生物胁迫方面的潜力。此外,我们的研究为重金属污染中的植物修复和生物修复策略提供了新方向,并增进了我们对[植物名称]重金属耐受机制的理解。