Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
Cell. 2024 Apr 25;187(9):2095-2116. doi: 10.1016/j.cell.2024.03.045.
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
植物病害导致饥荒,驱动人类迁移,并对农业可持续性构成挑战,因为病原体范围在气候变化下发生转移。100 多年前,植物育种家发现了孟德尔遗传基因座,赋予特定病原体分离株对疾病的抗性。随后对疾病抗性的培育是现代农业的基础,随着遗传学和基因组学研究中模式植物的出现和重点关注,在过去的 50 年里为分子生物学探索提供了丰富的资源。这些研究导致了细胞外和细胞内受体的鉴定,这些受体将细胞外微生物编码的分子模式或细胞内病原体传递的毒力效应物的识别转化为防御激活。这些受体系统和下游反应定义了自 5 亿年前植物迁移到陆地以来进化而来的植物免疫系统。我们目前对植物免疫系统的理解为理性增强抗性以控制继续困扰作物生产的许多疾病提供了平台。