Schußmann Max G, Wilhelm Manfred, Hirschberg Valerian
Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany.
Institute for Technical Chemistry, Technical University Clausthal, Arnold-Sommerfeld-Str. 4, 38678, Clausthal-Zellerfeld, Germany.
Nat Commun. 2024 Apr 26;15(1):3545. doi: 10.1038/s41467-024-47782-8.
We present a model-driven predictive scheme for the uniaxial extensional viscosity and strain hardening of branched polymer melts, specifically for the pom-pom architecture, using the small amplitude oscillatory shear mastercurve and the polymer architecture. A pom-pom shaped polymer is the simplest architecture with at least two branching points, needed to induce strain hardening. It consists of two stars, each with arms of the molecular weight , connected by a backbone of . Despite the pom-pom constitutive model, experimental data of systematic investigations lack due to synthetic complexity. With an optimized approach, we synthesized polystyrene pom-pom model systems with systematically varied and . Experimentally, we identify four characteristic strain rate dependent regimes of the extensional viscosity, which can be predicted from the rheological mastercurve. Furthermore, we find that the industrially important maximum strain hardening factor depends only on the arm number by . This framework offers a model-based design of branched polymers with predictable melt flow behavior.
我们提出了一种模型驱动的预测方案,用于预测支化聚合物熔体的单轴拉伸粘度和应变硬化,特别是针对绒球结构,该方案利用小振幅振荡剪切主曲线和聚合物结构。绒球形状的聚合物是具有至少两个分支点的最简单结构,这是产生应变硬化所必需的。它由两颗星组成,每颗星都有分子量为 的臂,通过 的主链连接。尽管有绒球本构模型,但由于合成复杂,缺乏系统研究的实验数据。通过优化方法,我们合成了具有系统变化的 和 的聚苯乙烯绒球模型体系。在实验中,我们确定了拉伸粘度的四种特征应变率相关区域,这些区域可以从流变主曲线预测出来。此外,我们发现工业上重要的最大应变硬化因子仅取决于臂数 。该框架提供了一种基于模型的设计方法,用于设计具有可预测熔体流动行为的支化聚合物。