Suppr超能文献

德国人类普马拉汉坦病毒感染风险的高分辨率早期预警系统。

High-resolution early warning system for human Puumala hantavirus infection risk in Germany.

机构信息

Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Toppheideweg 88, 48161, Münster, Germany.

Laboratory for Health Pests and Their Control, German Environment Agency, Corrensplatz 1, 14195, Berlin, Germany.

出版信息

Sci Rep. 2024 Apr 26;14(1):9602. doi: 10.1038/s41598-024-60144-0.

Abstract

The fluctuation of human infections by the Puumala orthohantavirus (PUUV) in Germany has been linked to weather and phenology parameters that drive the population growth of its host species. We quantified the annual PUUV-outbreaks at the district level by binarizing the reported infections in the period 2006-2021. With these labels we trained a model based on a support vector machine classifier for predicting local outbreaks and incidence well in advance. The feature selection for the optimal model was performed by a heuristic method and identified five monthly weather variables from the previous two years plus the beech flowering intensity of the previous year. The predictive power of the optimal model was assessed by a leave-one-out cross-validation in 16 years that led to an 82.8% accuracy for the outbreak and a 0.457 coefficient of determination for the incidence. Prediction risk maps for the entire endemic area in Germany will be annually available on a freely-accessible permanent online platform of the German Environment Agency. The model correctly identified 2022 as a year with low outbreak risk, whereas its prediction for large-scale high outbreak risk in 2023 was not confirmed.

摘要

德国人类感染普马拉 orthohantavirus(PUUV)的波动与驱动宿主物种种群增长的天气和物候参数有关。我们通过对 2006-2021 年期间报告的感染进行二进制化,在地区层面量化了每年的 PUUV 爆发情况。使用这些标签,我们基于支持向量机分类器训练了一个模型,用于提前很好地预测局部爆发和发病率。最优模型的特征选择通过启发式方法进行,并确定了前两年的五个月度天气变量以及前一年的山毛榉开花强度。最优模型的预测能力通过 16 年的留一交叉验证进行评估,导致爆发的准确率为 82.8%,发病率的决定系数为 0.457。德国整个流行地区的预测风险图将每年在德国环境署的免费永久在线平台上提供。该模型正确地将 2022 年识别为爆发风险低的一年,而其对 2023 年大规模高爆发风险的预测并未得到证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e0a/11053085/6123c5124b2f/41598_2024_60144_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验