Suppr超能文献

一种结合Transformer和大语言模型集成的跨语言情感分析多模态方法。

A multimodal approach to cross-lingual sentiment analysis with ensemble of transformer and LLM.

作者信息

Miah Md Saef Ullah, Kabir Md Mohsin, Sarwar Talha Bin, Safran Mejdl, Alfarhood Sultan, Mridha M F

机构信息

Department of Computer Science, American International University-Bangladesh, Dhaka, 1229, Bangladesh.

Faculty of Informatics, Eötvös Loránd University, Budapest, 1117, Hungary.

出版信息

Sci Rep. 2024 Apr 26;14(1):9603. doi: 10.1038/s41598-024-60210-7.

Abstract

Sentiment analysis is an essential task in natural language processing that involves identifying a text's polarity, whether it expresses positive, negative, or neutral sentiments. With the growth of social media and the Internet, sentiment analysis has become increasingly important in various fields, such as marketing, politics, and customer service. However, sentiment analysis becomes challenging when dealing with foreign languages, particularly without labelled data for training models. In this study, we propose an ensemble model of transformers and a large language model (LLM) that leverages sentiment analysis of foreign languages by translating them into a base language, English. We used four languages, Arabic, Chinese, French, and Italian, and translated them using two neural machine translation models: LibreTranslate and Google Translate. Sentences were then analyzed for sentiment using an ensemble of pre-trained sentiment analysis models: Twitter-Roberta-Base-Sentiment-Latest, bert-base-multilingual-uncased-sentiment, and GPT-3, which is an LLM from OpenAI. Our experimental results showed that the accuracy of sentiment analysis on translated sentences was over 86% using the proposed model, indicating that foreign language sentiment analysis is possible through translation to English, and the proposed ensemble model works better than the independent pre-trained models and LLM.

摘要

情感分析是自然语言处理中的一项重要任务,它涉及识别文本的极性,即文本表达的是积极、消极还是中性情感。随着社交媒体和互联网的发展,情感分析在营销、政治和客户服务等各个领域变得越来越重要。然而,在处理外语时,情感分析变得具有挑战性,尤其是在没有用于训练模型的标注数据的情况下。在本研究中,我们提出了一种由Transformer和大语言模型(LLM)组成的集成模型,该模型通过将外语翻译成基础语言英语来利用外语的情感分析。我们使用了四种语言,阿拉伯语、中文、法语和意大利语,并使用两种神经机器翻译模型进行翻译:LibreTranslate和谷歌翻译。然后,使用预训练的情感分析模型的集成对句子进行情感分析:Twitter-Roberta-Base-Sentiment-Latest、bert-base-multilingual-uncased-sentiment和GPT-3(OpenAI的一个LLM)。我们的实验结果表明,使用所提出的模型,对翻译句子的情感分析准确率超过86%,这表明通过翻译成英语进行外语情感分析是可行的,并且所提出的集成模型比独立的预训练模型和LLM表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3239/11053029/32a87fa8a0cb/41598_2024_60210_Figc_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验