Suppr超能文献

一项通过网络分析研究韩国正常牙合人群头影测量各项指标相关性的研究。

A study of correlations between cephalometric measurements in Koreans with normal occlusion by network analysis.

机构信息

Department of Orthodontics, College of Dentistry, Chosun University, 7 Chosundaegil, Dong-Gu, Gwangju, South Korea.

Department of Oral Anatomy, College of Dentistry, Chosun University, 7 Chosundaegil, Dong-Gu, Gwangju, South Korea.

出版信息

Sci Rep. 2024 Apr 26;14(1):9660. doi: 10.1038/s41598-024-60410-1.

Abstract

Analyzing the correlation between cephalometric measurements is important for improving our understanding of the anatomy in the oral and maxillofacial region. To minimize bias resulting from the design of the input data and to establish a reference for malocclusion research, the aims of this study were to construct the input set by integrating nine cephalometric analyses and to study the correlation structure of cephalometric variables in Korean adults with normal occlusion. To analyze the complex correlation structure among 65 cephalometric variables, which were based on nine classical cephalometric analyses, network analysis was applied to data obtained from 735 adults (368 males, 367 females) aged 18-25 years with normal occlusion. The structure was better revealed through weighted network analysis and minimum spanning tree. Network analysis revealed cephalometric variable clusters and the inter- and intra-correlation structure. Some metrics were divided based on their geometric interpretation rather than their clinical significance. It was confirmed that various classical cephalometric analyses primarily focus on investigating nine anatomical features. Investigating the correlation between cephalometric variables through network analysis can significantly enhance our understanding of the anatomical characteristics in the oral and maxillofacial region, which is a crucial step in studying malocclusion using artificial intelligence.

摘要

分析头影测量指标之间的相关性对于加深我们对口腔颌面部解剖结构的理解非常重要。为了最大限度地减少输入数据设计带来的偏差,并为错颌畸形研究建立参考,本研究旨在通过整合 9 项头影测量分析来构建输入集,并研究正常牙合的韩国成年人的头影测量变量的相关结构。为了分析基于 9 项经典头影测量分析的 65 个头影测量变量之间的复杂相关结构,对 735 名年龄在 18-25 岁、正常牙合的成年人(男性 368 名,女性 367 名)的数据进行了网络分析。通过加权网络分析和最小生成树更好地揭示了结构。网络分析揭示了头影测量变量群集以及它们之间和内部的相关性结构。一些指标是根据其几何解释而不是其临床意义进行划分的。已经证实,各种经典的头影测量分析主要侧重于研究 9 个解剖特征。通过网络分析研究头影测量变量之间的相关性可以显著增强我们对口腔颌面部解剖特征的理解,这是使用人工智能研究错颌畸形的关键步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5de/11053105/3a026f68553d/41598_2024_60410_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验