Goujon Marie, Liang Zhibin, Soriano-Castell David, Currais Antonio, Maher Pamela
Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA.
Antioxidants (Basel). 2024 Apr 13;13(4):460. doi: 10.3390/antiox13040460.
The global increase in the aging population has led to a rise in many age-related diseases with continuing unmet therapeutic needs. Research into the molecular mechanisms underlying both aging and neurodegeneration has identified promising therapeutic targets, such as the oxytosis/ferroptosis cell death pathway, in which mitochondrial dysfunction plays a critical role. This study focused on sterubin and fisetin, two flavonoids from the natural pharmacopeia previously identified as strong inhibitors of the oxytosis/ferroptosis pathway. Here, we investigated the effects of the compounds on the mitochondrial physiology in HT22 hippocampal nerve cells under oxytotic/ferroptotic stress. We show that the compounds can restore mitochondrial homeostasis at the level of redox regulation, calcium uptake, biogenesis, fusion/fission dynamics, and modulation of respiration, leading to the enhancement of bioenergetic efficiency. However, mitochondria are not required for the neuroprotective effects of sterubin and fisetin, highlighting their diverse homeostatic impacts. Sterubin and fisetin, thus, provide opportunities to expand drug development strategies for anti-oxytotic/ferroptotic agents and offer new perspectives on the intricate interplay between mitochondrial function, cellular stress, and the pathophysiology of aging and age-related neurodegenerative disorders.
全球老龄化人口的增加导致了许多与年龄相关疾病的增多,而治疗需求仍未得到满足。对衰老和神经退行性变潜在分子机制的研究已经确定了一些有前景的治疗靶点,比如氧化应激/铁死亡细胞死亡途径,其中线粒体功能障碍起着关键作用。本研究聚焦于司替瑞滨和非瑟酮,这两种来自天然药典的黄酮类化合物先前被鉴定为氧化应激/铁死亡途径的强效抑制剂。在此,我们研究了这些化合物在氧化应激/铁死亡应激下对HT22海马神经细胞线粒体生理学的影响。我们发现,这些化合物可以在氧化还原调节、钙摄取、生物合成、融合/分裂动态以及呼吸调节等水平上恢复线粒体稳态,从而提高生物能量效率。然而,司替瑞滨和非瑟酮的神经保护作用并不依赖线粒体,这突出了它们多样的稳态影响。因此,司替瑞滨和非瑟酮为拓展抗氧化应激/铁死亡药物的研发策略提供了机会,并为线粒体功能、细胞应激以及衰老和年龄相关神经退行性疾病的病理生理学之间的复杂相互作用提供了新的视角。