Wong Woonyen, Sari Youssef
Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
Brain Sci. 2024 Apr 5;14(4):361. doi: 10.3390/brainsci14040361.
Chronic opioid treatments dysregulate the glutamatergic system, inducing a hyperglutamatergic state in mesocorticolimbic brain regions. This study investigated the effects of exposure to hydrocodone overdose on locomotor activity, expression of target proteins related to the glutamatergic system, signaling kinases, and neuroinflammatory factors in the nucleus accumbens. The locomotor activity of mice was measured using the Comprehensive Laboratory Animal Monitoring System (CLAMS). CLAMS data showed that exposure to hydrocodone overdose increased locomotion activity in mice. This study tested ceftriaxone, known to upregulate major glutamate transporter 1 (GLT-1), in mice exposed to an overdose of hydrocodone. Thus, ceftriaxone normalized hydrocodone-induced hyperlocomotion activity in mice. Furthermore, exposure to hydrocodone overdose downregulated GLT-1, cystine/glutamate antiporter (xCT), and extracellular signal-regulated kinase activity (p-ERK/ERK) expression in the nucleus accumbens. However, exposure to an overdose of hydrocodone increased metabotropic glutamate receptor 5 (mGluR5), neuronal nitric oxide synthase activity (p-nNOS/nNOS), and receptor for advanced glycation end products (RAGE) expression in the nucleus accumbens. Importantly, ceftriaxone treatment attenuated hydrocodone-induced upregulation of mGluR5, p-nNOS/nNOS, and RAGE, as well as hydrocodone-induced downregulation of GLT-1, xCT, and p-ERK/ERK expression. These data demonstrated that exposure to hydrocodone overdose can cause dysregulation of the glutamatergic system, neuroinflammation, hyperlocomotion activity, and the potential therapeutic role of ceftriaxone in attenuating these effects.
长期使用阿片类药物会使谷氨酸能系统失调,在中脑边缘脑区诱发高谷氨酸能状态。本研究调查了暴露于氢可酮过量对伏隔核中运动活性、与谷氨酸能系统相关的靶蛋白表达、信号激酶和神经炎症因子的影响。使用综合实验动物监测系统(CLAMS)测量小鼠的运动活性。CLAMS数据显示,暴露于氢可酮过量会增加小鼠的运动活性。本研究在暴露于氢可酮过量的小鼠中测试了已知能上调主要谷氨酸转运体1(GLT-1)的头孢曲松。因此,头孢曲松使氢可酮诱导的小鼠运动亢进活性恢复正常。此外,暴露于氢可酮过量会下调伏隔核中GLT-1、胱氨酸/谷氨酸反向转运体(xCT)和细胞外信号调节激酶活性(p-ERK/ERK)的表达。然而,暴露于氢可酮过量会增加伏隔核中代谢型谷氨酸受体5(mGluR5)、神经元型一氧化氮合酶活性(p-nNOS/nNOS)和晚期糖基化终产物受体(RAGE)的表达。重要的是,头孢曲松治疗减弱了氢可酮诱导的mGluR5、p-nNOS/nNOS和RAGE的上调,以及氢可酮诱导的GLT-1、xCT和p-ERK/ERK表达的下调。这些数据表明,暴露于氢可酮过量会导致谷氨酸能系统失调、神经炎症、运动亢进活性,以及头孢曲松在减轻这些影响方面的潜在治疗作用。