Brunetti Valentina, Soda Teresa, Berra-Romani Roberto, De Sarro Giovambattista, Guerra Germano, Scarpellino Giorgia, Moccia Francesco
Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", 27110 Pavia, Italy.
Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
Biomedicines. 2024 Apr 16;12(4):880. doi: 10.3390/biomedicines12040880.
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.
谷氨酸是中枢神经系统中主要的兴奋性神经递质。谷氨酸能传递可由离子型谷氨酸受体(iGluRs)介导,其介导快速的突触去极化,这可能与钙离子内流以及突触传递强度的活动依赖性变化有关;也可由代谢型谷氨酸受体(mGluRs)介导,其通过募集第二信使系统介导较慢的突触后反应。过去三十年报道的大量证据表明,iGluRs和mGluRs之间这种教条式的划分可能并未反映iGluRs的实际生理信号传导模式,即α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体(AMPAR)、海人酸受体(KARs)和N-甲基-D-天冬氨酸(NMDA)受体(NMDARs)。在此,我们综述现有证据,支持以下观点:经典的iGluRs不仅能在神经元中,还能在脑星形胶质细胞和脑血管内皮细胞中募集不依赖通量的信号通路。了解iGluRs的信号传导多样性可能会对我们对谷氨酸能突触的理解产生深远影响。此外,它可能为针对脑部疾病的新型神经保护策略提供线索。