Suppr超能文献

基于空间特征变换和度量学习的个体奶牛开集识别

Open-Set Recognition of Individual Cows Based on Spatial Feature Transformation and Metric Learning.

作者信息

Wang Buyu, Li Xia, An Xiaoping, Duan Weijun, Wang Yuan, Wang Dian, Qi Jingwei

机构信息

College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China.

Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot 010010, China.

出版信息

Animals (Basel). 2024 Apr 14;14(8):1175. doi: 10.3390/ani14081175.

Abstract

The automated recognition of individual cows is foundational for implementing intelligent farming. Traditional methods of individual cow recognition from an overhead perspective primarily rely on singular back features and perform poorly for cows with diverse orientation distributions and partial body visibility in the frame. This study proposes an open-set method for individual cow recognition based on spatial feature transformation and metric learning to address these issues. Initially, a spatial transformation deep feature extraction module, ResSTN, which incorporates preprocessing techniques, was designed to effectively address the low recognition rate caused by the diverse orientation distribution of individual cows. Subsequently, by constructing an open-set recognition framework that integrates three attention mechanisms, four loss functions, and four distance metric methods and exploring the impact of each component on recognition performance, this study achieves refined and optimized model configurations. Lastly, introducing moderate cropping and random occlusion strategies during the data-loading phase enhances the model's ability to recognize partially visible individuals. The method proposed in this study achieves a recognition accuracy of 94.58% in open-set scenarios for individual cows in overhead images, with an average accuracy improvement of 2.98 percentage points for cows with diverse orientation distributions, and also demonstrates an improved recognition performance for partially visible and randomly occluded individual cows. This validates the effectiveness of the proposed method in open-set recognition, showing significant potential for application in precision cattle farming management.

摘要

个体奶牛的自动识别是实现智能养殖的基础。传统的从上方视角识别个体奶牛的方法主要依赖单一的背部特征,对于在图像帧中具有不同方向分布和部分身体可见性的奶牛识别效果不佳。本研究提出了一种基于空间特征变换和度量学习的个体奶牛开放集识别方法来解决这些问题。首先,设计了一个空间变换深度特征提取模块ResSTN,它结合了预处理技术,以有效解决个体奶牛方向分布多样导致的识别率低的问题。随后,通过构建一个集成了三种注意力机制、四个损失函数和四种距离度量方法的开放集识别框架,并探索每个组件对识别性能的影响,本研究实现了模型配置的精细化和优化。最后,在数据加载阶段引入适度裁剪和随机遮挡策略,提高了模型识别部分可见个体的能力。本研究提出的方法在开放集场景下对上方视角图像中的个体奶牛实现了94.58%的识别准确率,对于方向分布多样的奶牛平均准确率提高了2.98个百分点,并且对部分可见和随机遮挡的个体奶牛也表现出了改进的识别性能。这验证了所提方法在开放集识别中的有效性,显示出在精准养牛管理中的巨大应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ea2/11047326/eeba923dd3e5/animals-14-01175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验