Tsai Cheng-Han, Shih Dong-Her, Tu Jue-Hong, Wu Ting-Wei, Tsai Ming-Guei, Shih Ming-Hung
Department of Information Management and Institute of Healthcare Information Management, National Chung Cheng University, Chiayi City 62102, Taiwan.
Department of Emergency Medicine, Chiayi Branch, Taichung Veteran's General Hospital, Chiayi City 60090, Taiwan.
J Clin Med. 2024 Apr 15;13(8):2283. doi: 10.3390/jcm13082283.
: The increase in the global population of hemodialysis patients is linked to aging demographics and the prevalence of conditions such as arterial hypertension and diabetes mellitus. While previous research in hemodialysis has mainly focused on mortality predictions, there is a gap in studies targeting short-term hospitalization predictions using detailed, monthly blood test data. This study employs advanced data preprocessing and machine learning techniques to predict hospitalizations within a 30-day period among hemodialysis patients. Initial steps include employing K-Nearest Neighbor (KNN) imputation to address missing data and using the Synthesized Minority Oversampling Technique (SMOTE) to ensure data balance. The study then applies a Support Vector Machine (SVM) algorithm for the predictive analysis, with an additional enhancement through ensemble learning techniques, in order to improve prediction accuracy. The application of SVM in predicting hospitalizations within a 30-day period among hemodialysis patients resulted in an impressive accuracy rate of 93%. This accuracy rate further improved to 96% upon incorporating ensemble learning methods, demonstrating the efficacy of the chosen machine learning approach in this context. This study highlights the potential of utilizing machine learning to predict hospital readmissions within a 30-day period among hemodialysis patients based on monthly blood test data. It represents a significant leap towards precision medicine and personalized healthcare for this patient group, suggesting a paradigm shift in patient care through the proactive identification of hospitalization risks.
全球血液透析患者数量的增加与人口老龄化以及动脉高血压和糖尿病等疾病的流行有关。虽然此前关于血液透析的研究主要集中在死亡率预测上,但利用详细的月度血液检测数据进行短期住院预测的研究仍存在空白。本研究采用先进的数据预处理和机器学习技术来预测血液透析患者在30天内的住院情况。初始步骤包括采用K近邻(KNN)插补法处理缺失数据,并使用合成少数过采样技术(SMOTE)确保数据平衡。然后,该研究应用支持向量机(SVM)算法进行预测分析,并通过集成学习技术进行额外增强,以提高预测准确性。将SVM应用于预测血液透析患者30天内的住院情况,准确率高达93%,令人印象深刻。纳入集成学习方法后,这一准确率进一步提高到96%,证明了在这种情况下所选机器学习方法的有效性。本研究突出了利用机器学习根据月度血液检测数据预测血液透析患者30天内再次住院情况的潜力。这代表了针对该患者群体向精准医学和个性化医疗迈出的重要一步,表明通过主动识别住院风险,患者护理模式发生了转变。