Decaro Cristoforo, Montanari Giovanni Battista, Molinari Riccardo, Gilberti Alessio, Bagnoli Davide, Bianconi Marco, Bellanca Gaetano
1Department of EngineeringFerrara University44122FerraraItaly.
2MIST E-R40129BolognaItaly.
IEEE J Transl Eng Health Med. 2019 Oct 4;7:4100308. doi: 10.1109/JTEHM.2019.2938951. eCollection 2019.
This paper shows the application of machine learning techniques to predict hematic parameters using blood visible spectra during ex-vivo treatments. A spectroscopic setup was prepared for acquisition of blood absorbance spectrum and tested in an operational environment. This setup is non invasive and can be applied during dialysis sessions. A support vector machine and an artificial neural network, trained with a dataset of spectra, have been implemented for the prediction of hematocrit and oxygen saturation. Results of different machine learning algorithms are compared, showing that support vector machine is the best technique for the prediction of hematocrit and oxygen saturation.
本文展示了机器学习技术在体外治疗期间利用血液可见光谱预测血液参数方面的应用。制备了一个用于采集血液吸收光谱的光谱装置,并在实际操作环境中进行了测试。该装置是非侵入性的,可在透析过程中应用。使用光谱数据集训练的支持向量机和人工神经网络已被用于预测血细胞比容和血氧饱和度。比较了不同机器学习算法的结果,表明支持向量机是预测血细胞比容和血氧饱和度的最佳技术。