Suppr超能文献

用于预测血液透析患者血液参数的机器学习方法

Machine Learning Approach for Prediction of Hematic Parameters in Hemodialysis Patients.

作者信息

Decaro Cristoforo, Montanari Giovanni Battista, Molinari Riccardo, Gilberti Alessio, Bagnoli Davide, Bianconi Marco, Bellanca Gaetano

机构信息

1Department of EngineeringFerrara University44122FerraraItaly.

2MIST E-R40129BolognaItaly.

出版信息

IEEE J Transl Eng Health Med. 2019 Oct 4;7:4100308. doi: 10.1109/JTEHM.2019.2938951. eCollection 2019.

Abstract

This paper shows the application of machine learning techniques to predict hematic parameters using blood visible spectra during ex-vivo treatments. A spectroscopic setup was prepared for acquisition of blood absorbance spectrum and tested in an operational environment. This setup is non invasive and can be applied during dialysis sessions. A support vector machine and an artificial neural network, trained with a dataset of spectra, have been implemented for the prediction of hematocrit and oxygen saturation. Results of different machine learning algorithms are compared, showing that support vector machine is the best technique for the prediction of hematocrit and oxygen saturation.

摘要

本文展示了机器学习技术在体外治疗期间利用血液可见光谱预测血液参数方面的应用。制备了一个用于采集血液吸收光谱的光谱装置,并在实际操作环境中进行了测试。该装置是非侵入性的,可在透析过程中应用。使用光谱数据集训练的支持向量机和人工神经网络已被用于预测血细胞比容和血氧饱和度。比较了不同机器学习算法的结果,表明支持向量机是预测血细胞比容和血氧饱和度的最佳技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82bd/6788674/8354377669cd/decar1-2938951.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验