Pérez-Mora Salvador, Pérez-Ishiwara David Guillermo, Salgado-Hernández Sandra Viridiana, Medel-Flores María Olivia, Reyes-López César Augusto, Rodríguez Mario Alberto, Sánchez-Monroy Virginia, Gómez-García María Del Consuelo
Laboratorio de Biomedicina Molecular 1, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico.
Laboratorio de Bioquímica Estructural, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico.
Int J Mol Sci. 2024 Apr 11;25(8):4218. doi: 10.3390/ijms25084218.
Throughout its lifecycle, encounters a variety of stressful conditions. This parasite possesses Heat Shock Response Elements (HSEs) which are crucial for regulating the expression of various genes, aiding in its adaptation and survival. These HSEs are regulated by Heat Shock Transcription Factors (EhHSTFs). Our research has identified seven such factors in the parasite, designated as EhHSTF1 through to EhHSTF7. Significantly, under heat shock conditions and in the presence of the antiamoebic compound emetine, EhHSTF5, EhHSTF6, and EhHSTF7 show overexpression, highlighting their essential role in gene response to these stressors. Currently, only EhHSTF7 has been confirmed to recognize the HSE as a promoter of the gene (HSE_), leaving the binding potential of the other EhHSTFs to HSEs yet to be explored. Consequently, our study aimed to examine, both in vitro and in silico, the oligomerization, and binding capabilities of the recombinant EhHSTF5 protein (rEhHSTF5) to HSE_. The in vitro results indicate that the oligomerization of rEhHSTF5 is concentration-dependent, with its dimeric conformation showing a higher affinity for HSE_ than its monomeric state. In silico analysis suggests that the alpha 3 α-helix (α3-helix) of the DNA-binding domain (DBD5) of EhHSTF5 is crucial in binding to the major groove of HSE, primarily through hydrogen bonding and salt-bridge interactions. In summary, our results highlight the importance of oligomerization in enhancing the affinity of rEhHSTF5 for HSE_ and demonstrate its ability to specifically recognize structural motifs within HSE_. These insights significantly contribute to our understanding of one of the potential molecular mechanisms employed by this parasite to efficiently respond to various stressors, thereby enabling successful adaptation and survival within its host environment.
在其整个生命周期中,会遇到各种应激条件。这种寄生虫拥有热休克反应元件(HSEs),这些元件对于调节各种基因的表达至关重要,有助于其适应和生存。这些HSEs由热休克转录因子(EhHSTFs)调控。我们的研究在该寄生虫中鉴定出了七个这样的因子,命名为EhHSTF1至EhHSTF7。值得注意的是,在热休克条件下以及存在抗阿米巴化合物依米丁的情况下,EhHSTF5、EhHSTF6和EhHSTF7会出现过表达,突出了它们在基因对这些应激源反应中的重要作用。目前,只有EhHSTF7被证实能识别HSE作为基因(HSE_)的启动子,其他EhHSTFs与HSEs的结合潜力尚待探索。因此,我们的研究旨在通过体外和计算机模拟研究重组EhHSTF5蛋白(rEhHSTF5)与HSE_的寡聚化及结合能力。体外结果表明,rEhHSTF5的寡聚化是浓度依赖性的,其二聚体构象对HSE_的亲和力高于单体状态。计算机模拟分析表明,EhHSTF5的DNA结合结构域(DBD5)的α3α-螺旋(α3-螺旋)在与HSE的大沟结合中起关键作用,主要通过氢键和盐桥相互作用。总之,我们的结果突出了寡聚化在增强rEhHSTF5对HSE_亲和力方面的重要性,并证明了其特异性识别HSE_内结构基序的能力。这些见解极大地有助于我们理解这种寄生虫用于有效应对各种应激源的潜在分子机制之一,从而使其能够在宿主环境中成功适应和生存。