Suppr超能文献

所有广义线性模型的弹性网络正则化路径

Elastic Net Regularization Paths for All Generalized Linear Models.

作者信息

Tay J Kenneth, Narasimhan Balasubramanian, Hastie Trevor

机构信息

Department of Statistics, Stanford University, 390 Jane Stanford Way, Stanford, California 94305, United States of America.

Department of Biomedical Data Sciences, and Department of Statistics, Stanford University, 390 Jane Stanford Way, Stanford, CA 94305.

出版信息

J Stat Softw. 2023;106. doi: 10.18637/jss.v106.i01. Epub 2023 Mar 23.

Abstract

The lasso and elastic net are popular regularized regression models for supervised learning. Friedman, Hastie, and Tibshirani (2010) introduced a computationally efficient algorithm for computing the elastic net regularization path for ordinary least squares regression, logistic regression and multinomial logistic regression, while Simon, Friedman, Hastie, and Tibshirani (2011) extended this work to Cox models for right-censored data. We further extend the reach of the elastic net-regularized regression to all generalized linear model families, Cox models with (start, stop] data and strata, and a simplified version of the relaxed lasso. We also discuss convenient utility functions for measuring the performance of these fitted models.

摘要

套索和弹性网络是用于监督学习的流行正则化回归模型。弗里德曼、哈斯蒂和蒂布希拉尼(2010年)介绍了一种计算效率高的算法,用于计算普通最小二乘回归、逻辑回归和多项逻辑回归的弹性网络正则化路径,而西蒙、弗里德曼、哈斯蒂和蒂布希拉尼(2011年)将这项工作扩展到了用于右删失数据的考克斯模型。我们进一步将弹性网络正则化回归的适用范围扩展到所有广义线性模型族、具有(起始,终止]数据和分层的考克斯模型,以及松弛套索的简化版本。我们还讨论了用于衡量这些拟合模型性能的便捷实用函数。

相似文献

引用本文的文献

10
Optimized network inference for immune diseased single cells.针对免疫疾病单细胞的优化网络推理
Front Immunol. 2025 Jul 24;16:1597862. doi: 10.3389/fimmu.2025.1597862. eCollection 2025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验