Suppr超能文献

使用 YOLOv4 和深度 SORT 算法估计街道交叉口的行人步行速度:原理证明。

Estimating pedestrian walking speed at street crossings using the YOLOv4 and deep SORT algorithms: Proof of principle.

机构信息

KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Canada.

KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.

出版信息

Appl Ergon. 2024 Sep;119:104292. doi: 10.1016/j.apergo.2024.104292. Epub 2024 Apr 26.

Abstract

There is evidence that existing standards for signal timing do not provide enough time for many pedestrians to safely cross intersections. Yet, current methods for studying this problem rely on inefficient manual observations. The objective of this work was to determine if the YOLOv4 and Deep SORT computer vision algorithms have the potential to be incorporated into automated measurement systems to measure and compare pedestrian walking speeds at one-stage and two-stage street crossings captured in birds-eye-view video. Walking speed was estimated for 1018 pedestrians at single-stage (591 pedestrians) and two-stage (427 pedestrians) street crossings. Pedestrians in the one-stage crossing were found to be significantly slower than pedestrians who crossed the two-stage crossing in one signal (1.19 ± 0.50 vs. 1.31 ± 0.49 m/s, p < 0.001). This proof of principle study demonstrated that the YOLOv4 and Deep SORT approaches are promising for estimating pedestrian walking speed.

摘要

有证据表明,现有的信号定时标准并没有为许多行人提供足够的时间来安全地穿过路口。然而,目前研究这个问题的方法依赖于效率低下的人工观察。这项工作的目的是确定 YOLOv4 和 Deep SORT 计算机视觉算法是否有可能被纳入自动测量系统,以测量和比较在鸟瞰视频中捕获的单级和两级街道交叉口的行人步行速度。对 1018 名行人在单级(591 名行人)和两级(427 名行人)街道交叉口的步行速度进行了估计。结果发现,一级交叉口的行人明显比在一个信号周期内穿过两级交叉口的行人慢(1.19 ± 0.50 与 1.31 ± 0.49 m/s,p < 0.001)。这项原理验证研究表明,YOLOv4 和 Deep SORT 方法在估计行人步行速度方面很有前途。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验