Wang Zilong, Li Yunfeng, Zhai Jinglei, Yang Siwei, Sun Biao, Liang Pei
College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China; Xiamen Palantier Technology Co., Ltd., Xiamen, 361000, China.
College of Information Engineering, China Jiliang University, Hangzhou, 310018, China.
Talanta. 2024 Aug 1;275:126138. doi: 10.1016/j.talanta.2024.126138. Epub 2024 Apr 25.
Raman spectroscopy is a general and non-destructive detection technique that can obtain detailed information of the chemical structure of materials. In the past, when using chemometric algorithms to analyze the Raman spectra of mixtures, the challenges of complex spectral overlap and noise often limited the accurate identification of components. The emergence of deep learning has introduced a novel approach to qualitative analysis of mixed Raman spectra. In this paper, we propose a deep learning-based Raman spectroscopy qualitative analysis algorithm (RST) by borrowing the ideas of convolutional neural network and Transformer. By transforming the Raman spectrum into 64 word vectors, the contribution weights of each word vector to the components are obtained. For the 75 spectral data used for validation, the positive identification rate can reach 100.00 %, the recall rate can reach 99.3 %, the average identification score can reach 9.51, and it is applicable to the fields of Raman and surface-enhanced Raman spectroscopy. Furthermore, compared with traditional CNN models, RST has excellent accuracy and robustness in identifying components in complex mixtures. The model's interpretability has been enhanced, aiding in a deeper understanding of spectroscopic learning patterns for future analysis of more complex mixtures.
拉曼光谱是一种通用的非破坏性检测技术,可获取材料化学结构的详细信息。过去,在使用化学计量算法分析混合物的拉曼光谱时,复杂的光谱重叠和噪声挑战常常限制了成分的准确识别。深度学习的出现为混合拉曼光谱的定性分析引入了一种新方法。在本文中,我们借鉴卷积神经网络和Transformer的思想,提出了一种基于深度学习的拉曼光谱定性分析算法(RST)。通过将拉曼光谱转换为64个词向量,得到每个词向量对成分的贡献权重。对于用于验证的75个光谱数据,阳性识别率可达100.00%,召回率可达99.3%,平均识别分数可达9.51,适用于拉曼光谱和表面增强拉曼光谱领域。此外,与传统的CNN模型相比,RST在识别复杂混合物中的成分方面具有出色的准确性和鲁棒性。该模型的可解释性得到了增强,有助于更深入地理解光谱学习模式,以便未来分析更复杂的混合物。