Georgiev Dimitar, Fernández-Galiana Álvaro, Vilms Pedersen Simon, Papadopoulos Georgios, Xie Ruoxiao, Stevens Molly M, Barahona Mauricio
Department of Computing, Faculty of Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
UKRI Centre for Doctoral Training in AI for Healthcare, Imperial College London, London SW7 2AZ, United Kingdom.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2407439121. doi: 10.1073/pnas.2407439121. Epub 2024 Oct 29.
Raman spectroscopy is widely used across scientific domains to characterize the chemical composition of samples in a nondestructive, label-free manner. Many applications entail the unmixing of signals from mixtures of molecular species to identify the individual components present and their proportions, yet conventional methods for chemometrics often struggle with complex mixture scenarios encountered in practice. Here, we develop hyperspectral unmixing algorithms based on autoencoder neural networks, and we systematically validate them using both synthetic and experimental benchmark datasets created in-house. Our results demonstrate that unmixing autoencoders provide improved accuracy, robustness, and efficiency compared to standard unmixing methods. We also showcase the applicability of autoencoders to complex biological settings by showing improved biochemical characterization of volumetric Raman imaging data from a monocytic cell.
拉曼光谱在科学领域中被广泛应用,以无损、无标记的方式表征样品的化学成分。许多应用需要从分子物种混合物中分离信号,以识别存在的单个成分及其比例,但传统的化学计量学方法在实际遇到的复杂混合物场景中往往存在困难。在这里,我们基于自动编码器神经网络开发了高光谱解混算法,并使用内部创建的合成和实验基准数据集对其进行了系统验证。我们的结果表明,与标准解混方法相比,解混自动编码器具有更高的准确性、鲁棒性和效率。我们还通过展示来自单核细胞的体积拉曼成像数据的改进生化表征,展示了自动编码器在复杂生物环境中的适用性。