Suppr超能文献

通过卤化胺化和氧化聚合反应设计硬碳微球结构用于钠离子嵌入机理研究。

Designing hard carbon microsphere structure via halogenation amination and oxidative polymerization reactions for sodium ion insertion mechanism investigation.

作者信息

Zhao Yafang, Zheng Jun, Zhao Yanmei, Zhang Kai, Fu Wenwu, Wang Gang, Wang Haodong, Hao Yaowei, Lin Zhiguang, Cao Xiaocao, Liu Jiayi, Zhang Ming, Shen Zhongrong

机构信息

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China.

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China.

出版信息

J Colloid Interface Sci. 2024 Aug 15;668:202-212. doi: 10.1016/j.jcis.2024.04.148. Epub 2024 Apr 25.

Abstract

Hard carbon as a negative electrode material for sodium-ion batteries (SIBs) has great commercial potential and has been widely studied. The sodium-ion intercalation in graphite domains and the filling of closed pores in the low voltage platform region still remain a subject of controversy. We have successfully constructed hard carbon materials with a pseudo-graphitic structure by using polymerizable p-phenylenediamine and dichloromethane as carbon sources. This was achieved by a halogenated amination reaction and oxidative polymerization. It was found that the capacity of hard carbon materials mainly originates from intercalation into graphite domains. The study found that the prepared hard carbon could store 339.33 mAh g of sodium in a reversible way at a current density of 25 mA g, and it had an initial coulomb efficiency of 80.23%. It even maintained a reversible sodium storage capacity of 125.53 mAh g at a high current density of 12.8 A g. Based on the analysis of hard carbon structure and electrochemical performance, it was shown that the materials conform with an "adsorption-intercalation" mechanism for sodium storage.

摘要

硬碳作为钠离子电池(SIBs)的负极材料具有巨大的商业潜力,并且已经得到了广泛研究。钠离子在石墨域中的嵌入以及低电压平台区域中封闭孔隙的填充仍然存在争议。我们通过使用可聚合的对苯二胺和二氯甲烷作为碳源,成功构建了具有准石墨结构的硬碳材料。这是通过卤化胺化反应和氧化聚合实现的。研究发现,硬碳材料的容量主要源于钠离子嵌入石墨域。研究发现,所制备的硬碳在电流密度为25 mA g时能够以可逆方式存储339.33 mAh g的钠,其初始库仑效率为80.23%。在12.8 A g的高电流密度下,它甚至保持了125.53 mAh g的可逆钠存储容量。基于对硬碳结构和电化学性能的分析,结果表明该材料符合钠存储的“吸附-嵌入”机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验