Suppr超能文献

从钠存储机制到高容量碳基负极的设计:综述

From Sodium Storage Mechanism to Design of High-Capacity Carbon-Based Anode: A Review.

作者信息

Zhou Yujun, Shen Zhongrong

机构信息

Xiamen Tungsten Co., Ltd., 22F, Building A, Tefang Center, No. 81 Zhanhong Road, Siming District, Xiamen 361009, China.

Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China.

出版信息

Materials (Basel). 2025 May 13;18(10):2248. doi: 10.3390/ma18102248.

Abstract

Sodium-ion batteries (SIBs) have emerged as a viable alternative to lithium-ion technologies, with carbon-based anodes playing a pivotal role in addressing key challenges of sodium storage. This review systematically examines hard carbon as the premier anode material, elucidating its dual sodium storage mechanisms: (1) sloping capacity (2.0-0.1 V vs. Na/Na) from surface/defect adsorption and (2) plateau capacity (<0.1 V) via closed-pore filling and pseudo-graphitic intercalation. Through critical analysis of recent advancements, we establish that optimized hard carbon architectures delivering 300-400 mAh/g capacity require precise coordination of pseudo-graphitic domains (d = 0.36-0.40 nm) and <1 nm closed pores. This review ultimately provides a design blueprint for next-generation carbon anodes, proposing three research frontiers: (1) machine learning-guided microstructure optimization, (2) dynamic sodiation/desodiation control in sub nm pores, and (3) scalable manufacturing of heteroatom-doped architectures with engineered pseudo-graphitic domains. These advancements position hard carbon anodes as critical enablers for high-performance, cost-effective SIBs in grid-scale energy storage applications.

摘要

钠离子电池(SIBs)已成为锂离子技术的一种可行替代方案,碳基负极在应对钠存储的关键挑战中发挥着关键作用。本综述系统地研究了硬碳作为首要负极材料,阐明了其双重钠存储机制:(1)通过表面/缺陷吸附产生的倾斜容量(相对于Na/Na为2.0 - 0.1 V),以及(2)通过闭孔填充和准石墨插层产生的平台容量(<0.1 V)。通过对近期进展的批判性分析,我们确定,要实现300 - 400 mAh/g容量的优化硬碳结构,需要准石墨域(d = 0.36 - 0.40 nm)和<1 nm闭孔的精确协调。本综述最终为下一代碳负极提供了设计蓝图,提出了三个研究前沿方向:(1)机器学习引导的微观结构优化,(2)亚纳米孔中的动态钠化/脱钠控制,以及(3)具有工程化准石墨域的杂原子掺杂结构的可扩展制造。这些进展使硬碳负极成为电网规模储能应用中高性能、低成本钠离子电池的关键推动因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a738/12113292/aa19c2d220c8/materials-18-02248-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验