Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, Brazil.
Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280 São José do Campos, SP, Brazil.
Int J Biol Macromol. 2024 May;268(Pt 2):131883. doi: 10.1016/j.ijbiomac.2024.131883. Epub 2024 Apr 25.
The present study highlights the integration of lignin with graphene oxide (GO) and its reduced form (rGO) as a significant advancement within the bio-based products industry. Lignin-phenol-formaldehyde (LPF) resin is used as a carbon source in polyurethane foams, with the addition of 1 %, 2 %, and 4 % of GO and rGO to produce carbon structures thus producing carbon foams (CFs). Two conversion routes are assessed: (i) direct addition with rGO solution, and (ii) GO reduction by heat treatment. Carbon foams are characterized by thermal, structural, and morphological analysis, alongside an assessment of their electrochemical behavior. The thermal decomposition of samples with GO is like those having rGO, indicating the effective removal of oxygen groups in GO by carbonization. The addition of GO and rGO significantly improved the electrochemical properties of CF, with the GO2% sensors displaying 39 % and 62 % larger electroactive area than control and rGO2% sensors, respectively. Furthermore, there is a significant electron transfer improvement in GO sensors, demonstrating a promising potential for ammonia detection. Detailed structural and performance analysis highlights the significant enhancement in electrochemical properties, paving the way for the development of advanced sensors for gas detection, particularly ammonia, with the prospective market demands for durable, simple, cost-effective, and efficient devices.
本研究强调了木质素与氧化石墨烯(GO)及其还原形式(rGO)的整合,这是生物基产品行业的重大进展。木质素-酚醛(LPF)树脂被用作聚氨酯泡沫中的碳源,添加 1%、2%和 4%的 GO 和 rGO 以产生碳结构,从而产生碳泡沫(CF)。评估了两种转化途径:(i)直接添加 rGO 溶液,和(ii)通过热处理还原 GO。通过热、结构和形态分析对碳泡沫进行了表征,并评估了它们的电化学行为。具有 GO 的样品的热分解与具有 rGO 的样品相似,表明 GO 中的氧基团通过碳化被有效去除。GO 和 rGO 的添加显著改善了 CF 的电化学性能,GO2%传感器的比活性面积比对照和 rGO2%传感器分别大 39%和 62%。此外,GO 传感器的电子转移得到了显著改善,这表明其在氨检测方面具有很大的应用潜力。详细的结构和性能分析突出了电化学性能的显著提高,为开发用于气体检测的先进传感器铺平了道路,特别是对于具有耐用性、简单性、成本效益和高效性的市场需求不断增长的氨气传感器。