Kuźma Blazej, Kadowaki Luis H S, Murawski Kris, Musielak Zdzislaw E, Poedts Stefaan, Yuan Ding, Feng Xueshang
Shenzhen Key Laboratory of Numerical Prediction for Space Storm, Harbin Institute of Technology, Shenzhen 51805, People's Republic of China.
Institute of Physics, University of Maria Curie-Skłodowska, ul. Radziszewskiego 10, Lublin 20-031, Poland.
Philos Trans A Math Phys Eng Sci. 2024 Jun 9;382(2272):20230218. doi: 10.1098/rsta.2023.0218. Epub 2024 Apr 25.
The cutoff effect is a significant determinant of solar magnetohydrodynamic wave propagation and hence pivotal in energy transfer studies, such as solar plasma heating and seismological diagnostics. Despite continuous efforts, no good agreement between observed waveperiods and theory or numerical simulations was found. Our objective is to investigate the magnetoacoustic cutoff effect in the partially ionized solar atmosphere, factoring in the two-fluid effects. We developed a two-fluid MHD numerical model and used it to simulate a quiet region of the Sun from the top of the convective zone to the low corona. Our findings show that the ongoing granulation excites a wide range of waves propagating into the upper atmospheric layers. The cutoff waveperiods strongly depend on the height. Two-fluid waveperiods obtained with numerical simulations reproduce the recent observations at a very good level of compliance. Furthermore, direct comparison with strongly coupled cases that imitate the single-fluid approximation have shown that the waveperiod propagation pattern is only present in fully two-fluid simulations. We conclude that the presence of neutrals and therefore collisional terms change the dynamics of the magnetized plasma, in comparison with the single-fluid approximation. This effect is more prominently seen in the upper photosphere and chromosphere. This article is part of the theme issue 'Partially ionized plasma of the solar atmosphere: recent advances and future pathways'.
截止效应是太阳磁流体动力学波传播的一个重要决定因素,因此在诸如太阳等离子体加热和地震学诊断等能量传输研究中至关重要。尽管人们不断努力,但在观测到的波周期与理论或数值模拟之间并未发现良好的一致性。我们的目标是研究部分电离的太阳大气中的磁声截止效应,同时考虑双流体效应。我们开发了一个双流体磁流体动力学数值模型,并使用它来模拟从对流层顶部到低日冕的太阳宁静区域。我们的研究结果表明,持续的米粒组织激发了一系列向上层大气传播的波。截止波周期强烈依赖于高度。通过数值模拟得到的双流体波周期在很高的符合程度上再现了最近的观测结果。此外,与模拟单流体近似的强耦合情况的直接比较表明,波周期传播模式仅出现在完全双流体模拟中。我们得出结论,与单流体近似相比,中性粒子的存在以及因此产生的碰撞项改变了磁化等离子体的动力学。这种效应在光球上层和色球层中更为明显。本文是主题为“太阳大气的部分电离等离子体:最新进展和未来路径”的一部分。