Suppr超能文献

Radiative loss and ion-neutral collisional effects in astrophysical plasmas.

作者信息

Popescu Braileanu Beatrice, Keppens Rony

机构信息

Department of Mathematics, Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, Leuven 3001, Belgium.

出版信息

Philos Trans A Math Phys Eng Sci. 2024 Jun 9;382(2272):20230217. doi: 10.1098/rsta.2023.0217. Epub 2024 Apr 25.

Abstract

In this paper, we study the role of radiative cooling (RC) in a two-fluid model consisting of coupled neutrals and charged particles. We first analyse the linearized two-fluid equations where we include radiative losses in the energy equation for the charged particles. In a one-dimensional geometry for parallel propagation and in the limiting cases of weak and strong coupling, it can be shown analytically that the instability conditions for the thermal mode and the sound waves, the isobaric and isentropic criteria, respectively, remain unchanged with respect to one-fluid radiative plasmas. For the parameters considered in this paper, representative for the solar corona, the RC produces growth of the thermal mode and damping of the sound waves. In the weak coupling limit, the growth of the thermal instability and the damping of the sound waves is as derived in Field (Field 1965 , 531 (doi:10.1086/148317)) using the charged fluid properties. When neutrals are included and are sufficiently coupled to the charges, the thermal mode growth rate and the wave damping both reduce by the same factor, which depends on the ionization fraction only. For a heating function that is constant in time, we find that the growth of the thermal mode and the damping of the sound waves are slightly larger. The numerical calculation of the eigenvalues of the general system of equations in a three-dimensional geometry confirm the analytic results. We then run two-dimensional fully nonlinear simulations that give consistent results: a higher ionization fraction or lower coupling will increase the growth rate. The magnetic field contribution is negligible in the linear phase. Ionization-recombination effects might play an important role because the RC produces a large range of temperatures in the system. In the numerical simulation, after the first condensation phase, when the minimum temperature is reached, the fraction of neutrals increases four orders of magnitude because of the recombination. This article is part of the theme issue 'Partially ionized plasma of the solar atmosphere: recent advances and future pathways'.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验