Nemamcha Houssam-Eddine, Vu Nhu-Nang, Tran D Son, Boisvert Cédrik, Nguyen D Duc, Nguyen-Tri Phuong
Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
Sci Total Environ. 2024 Jun 25;931:172816. doi: 10.1016/j.scitotenv.2024.172816. Epub 2024 Apr 27.
The development of advanced materials for efficient photocatalytic H production and CO reduction is highly recommended for addressing environmental issues and producing clean energy sources. Specifically, MXenes have emerged as two-dimensional (2D) materials extensively used as high-performance cocatalysts in photocatalyst systems owing to their outstanding features of structure and properties such as high conductivity, large specific surface area, and abundant active sites. Nevertheless, there is a lack of deep and systematic studies concerning the application of these emerging materials for CO reduction reaction (CRR) and H production (HER). This review first outlines the essential features of MXenes, encompassing the synthesis methods, composition, surface terminations, and electronic properties, which make them highly active as cocatalysts. It then examines the recent progress in MXene-based photocatalysts, emphasizing the synergy achieved by coupling MXenes as co-catalysts with semiconductors, utilizing MXenes as a support for the consistent growth of photocatalysts, leading to finely dispersed nanoparticles, and exploiting MXene as exceptional precursors for creating MXene/metal oxide photocomposite. The roles of engineering surface terminations of MXene cocatalysts, MXene quantum dots (QDs), and distinctive morphologies in MXenes-based photocatalyst systems to enhance photocatalytic activity for both HER and CRR have been explored both experimentally and theoretically using DFT calculations. Challenges and prospects for MXene-based photocatalysts are also addressed. Finally, suggestions for further research and development of effective and economical MXenes/semiconductors strategies are proposed. This comprehensive review article serves as a valuable reference for researchers for applying MXenes in photocatalysis.
为解决环境问题并生产清洁能源,强烈建议开发用于高效光催化产氢和二氧化碳还原的先进材料。具体而言,MXenes作为二维(2D)材料已崭露头角,由于其结构和性能的突出特点,如高导电性、大比表面积和丰富的活性位点,被广泛用作光催化剂体系中的高性能助催化剂。然而,对于这些新兴材料在二氧化碳还原反应(CRR)和产氢(HER)中的应用,缺乏深入系统的研究。本综述首先概述了MXenes的基本特征,包括合成方法、组成、表面端基和电子性质,这些使其作为助催化剂具有高活性。接着考察了基于MXene的光催化剂的最新进展,强调了通过将MXenes作为助催化剂与半导体耦合、利用MXenes作为光催化剂持续生长的支撑体以获得精细分散的纳米颗粒,以及将MXene用作制备MXene/金属氧化物光复合材料的优异前驱体所实现的协同效应。通过实验和使用密度泛函理论(DFT)计算从理论上探索了MXene助催化剂的工程表面端基、MXene量子点(QDs)以及MXenes基光催化剂体系中独特形态在增强HER和CRR光催化活性方面的作用。还讨论了基于MXene的光催化剂面临的挑战和前景。最后,提出了关于进一步研发有效且经济的MXenes/半导体策略的建议。这篇全面的综述文章为研究人员在光催化中应用MXenes提供了有价值的参考。