Chrysalis Consulting, Danang, Viet Nam; Institute for Plant Protection, China Academy of Agricultural Sciences (CAAS), Beijing, China; School of Biological Sciences, University of Queensland, Saint Lucia, Australia; Food and Agriculture Organization (FAO), Rome, Italy.
cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, University of the Azores, Angra do Heroísmo, Portugal.
Sci Total Environ. 2024 Jun 20;930:172807. doi: 10.1016/j.scitotenv.2024.172807. Epub 2024 Apr 26.
Biodiversity loss, as driven by anthropogenic global change, imperils biosphere intactness and integrity. Ecosystem services such as top-down regulation (or biological control; BC) are susceptible to loss of extinction-prone taxa at upper trophic levels and secondary 'support' species e.g., herbivores. Here, drawing upon curated open-access interaction data, we structurally analyze trophic networks centered on the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) and assess their robustness to species loss. Tri-partite networks link 80 BC organisms (invertebrate or microbial), 512 lepidopteran hosts and 1194 plants (including 147 cultivated crops) in the Neotropics. These comprise threatened herbaceous or woody plants and conservation flagships such as saturniid moths. Treating all interaction partners functionally equivalent, random herbivore loss exerts a respective 26 % or 108 % higher impact on top-down regulation in crop and non-crop settings than that of BC organisms (at 50 % loss). Equally, random loss of BC organisms affects herbivore regulation to a greater extent (13.8 % at 50 % loss) than herbivore loss mediates their preservation (11.4 %). Yet, under moderate biodiversity loss, (non-pest) herbivores prove highly susceptible to loss of BC organisms. Our topological approach spotlights how agriculturally-subsidized BC agents benefit vegetation restoration, while non-pest herbivores uphold biological control in on- and off-farm settings alike. Our work underlines how the on-farm usage of endemic biological control organisms can advance conservation, restoration, and agricultural sustainability imperatives. We discuss how integrative approaches and close interdisciplinary cooperation can spawn desirable outcomes for science, policy and practice.
生物多样性的丧失是由人为的全球变化驱动的,这危及了生物圈的完整性。生态系统服务,如自上而下的调节(或生物防治;BC),容易受到上层营养级易灭绝类群和次要“支持”物种(如食草动物)的丧失的影响。在这里,我们利用经过精心整理的开放获取的相互作用数据,从结构上分析了以秋粘虫 Spodoptera frugiperda(鳞翅目:夜蛾科)为中心的营养网络,并评估了它们对物种丧失的鲁棒性。三分网络将 80 种 BC 生物(无脊椎动物或微生物)、512 种鳞翅目宿主和 1194 种植物(包括 147 种栽培作物)联系在一起,这些植物包括受威胁的草本或木本植物和食虫动物的旗舰物种,如 Saturniid 飞蛾。将所有的相互作用伙伴视为功能等效的,随机的食草动物的丧失对作物和非作物环境中的自上而下的调节的影响分别比 BC 生物高出 26%或 108%(在 50%的损失下)。同样,BC 生物的随机损失对食草动物的调节的影响更大(在 50%的损失下为 13.8%),而食草动物的损失对其保护的影响较小(11.4%)。然而,在中度生物多样性丧失的情况下,(非害虫)食草动物极易受到 BC 生物的丧失的影响。我们的拓扑方法强调了农业补贴的 BC 剂如何有益于植被恢复,而非害虫食草动物在农场内外环境中都维持着生物防治。我们的工作强调了如何在农场中使用地方性生物防治生物可以推进保护、恢复和农业可持续性的优先事项。我们讨论了如何通过综合方法和密切的跨学科合作,为科学、政策和实践带来理想的结果。