Suppr超能文献

ChatGPT 在放射学中的应用:性能、陷阱及未来展望的系统评价。

ChatGPT in radiology: A systematic review of performance, pitfalls, and future perspectives.

机构信息

Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia.

Independent Clinical Radiology Researcher, Los Angeles, CA 90024, USA.

出版信息

Diagn Interv Imaging. 2024 Jul-Aug;105(7-8):251-265. doi: 10.1016/j.diii.2024.04.003. Epub 2024 Apr 27.

Abstract

PURPOSE

The purpose of this study was to systematically review the reported performances of ChatGPT, identify potential limitations, and explore future directions for its integration, optimization, and ethical considerations in radiology applications.

MATERIALS AND METHODS

After a comprehensive review of PubMed, Web of Science, Embase, and Google Scholar databases, a cohort of published studies was identified up to January 1, 2024, utilizing ChatGPT for clinical radiology applications.

RESULTS

Out of 861 studies derived, 44 studies evaluated the performance of ChatGPT; among these, 37 (37/44; 84.1%) demonstrated high performance, and seven (7/44; 15.9%) indicated it had a lower performance in providing information on diagnosis and clinical decision support (6/44; 13.6%) and patient communication and educational content (1/44; 2.3%). Twenty-four (24/44; 54.5%) studies reported the proportion of ChatGPT's performance. Among these, 19 (19/24; 79.2%) studies recorded a median accuracy of 70.5%, and in five (5/24; 20.8%) studies, there was a median agreement of 83.6% between ChatGPT outcomes and reference standards [radiologists' decision or guidelines], generally confirming ChatGPT's high accuracy in these studies. Eleven studies compared two recent ChatGPT versions, and in ten (10/11; 90.9%), ChatGPTv4 outperformed v3.5, showing notable enhancements in addressing higher-order thinking questions, better comprehension of radiology terms, and improved accuracy in describing images. Risks and concerns about using ChatGPT included biased responses, limited originality, and the potential for inaccurate information leading to misinformation, hallucinations, improper citations and fake references, cybersecurity vulnerabilities, and patient privacy risks.

CONCLUSION

Although ChatGPT's effectiveness has been shown in 84.1% of radiology studies, there are still multiple pitfalls and limitations to address. It is too soon to confirm its complete proficiency and accuracy, and more extensive multicenter studies utilizing diverse datasets and pre-training techniques are required to verify ChatGPT's role in radiology.

摘要

目的

本研究旨在系统地回顾 ChatGPT 的报告性能,识别其潜在的局限性,并探讨其在放射学应用中的集成、优化和伦理考虑的未来方向。

材料和方法

通过全面检索 PubMed、Web of Science、Embase 和 Google Scholar 数据库,确定了截至 2024 年 1 月 1 日使用 ChatGPT 进行临床放射学应用的已发表研究的队列。

结果

从 861 项研究中得出 44 项研究评估了 ChatGPT 的性能;其中,37 项(37/44;84.1%)表现出色,7 项(7/44;15.9%)表现不佳,在提供诊断和临床决策支持信息(6/44;13.6%)和患者沟通和教育内容(1/44;2.3%)方面表现不佳。24 项(24/44;54.5%)研究报告了 ChatGPT 性能的比例。在这些研究中,19 项(19/24;79.2%)研究记录了中位数准确率为 70.5%,在 5 项(5/24;20.8%)研究中,ChatGPT 结果与参考标准[放射科医生的决策或指南]之间的中位数一致性为 83.6%,通常证实了 ChatGPT 在这些研究中的高准确性。11 项研究比较了两个最近的 ChatGPT 版本,在 10 项(10/11;90.9%)研究中,ChatGPTv4 优于 v3.5,在处理更高阶思维问题、更好地理解放射学术语以及提高图像描述准确性方面表现出显著的增强。使用 ChatGPT 的风险和关注点包括有偏见的反应、有限的原创性以及导致错误信息、幻觉、不当引用和虚假参考文献、网络安全漏洞和患者隐私风险的潜在不准确信息。

结论

尽管 ChatGPT 在 84.1%的放射学研究中显示出了有效性,但仍存在多个缺陷和局限性需要解决。现在还不能确定其完全熟练程度和准确性,需要进行更多广泛的多中心研究,利用多样化的数据集和预训练技术来验证 ChatGPT 在放射学中的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验