Suppr超能文献

使用可变长度时间序列数据开发和外部验证深度学习临床预测模型。

Development and external validation of deep learning clinical prediction models using variable-length time series data.

机构信息

Department of Medicine, University of Wisconsin-Madison, Madison, WI 53792, United States.

Department of Medicine, University of Chicago, Chicago, IL 60637, United States.

出版信息

J Am Med Inform Assoc. 2024 May 20;31(6):1322-1330. doi: 10.1093/jamia/ocae088.

Abstract

OBJECTIVES

To compare and externally validate popular deep learning model architectures and data transformation methods for variable-length time series data in 3 clinical tasks (clinical deterioration, severe acute kidney injury [AKI], and suspected infection).

MATERIALS AND METHODS

This multicenter retrospective study included admissions at 2 medical centers that spanned 2007-2022. Distinct datasets were created for each clinical task, with 1 site used for training and the other for testing. Three feature engineering methods (normalization, standardization, and piece-wise linear encoding with decision trees [PLE-DTs]) and 3 architectures (long short-term memory/gated recurrent unit [LSTM/GRU], temporal convolutional network, and time-distributed wrapper with convolutional neural network [TDW-CNN]) were compared in each clinical task. Model discrimination was evaluated using the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC).

RESULTS

The study comprised 373 825 admissions for training and 256 128 admissions for testing. LSTM/GRU models tied with TDW-CNN models with both obtaining the highest mean AUPRC in 2 tasks, and LSTM/GRU had the highest mean AUROC across all tasks (deterioration: 0.81, AKI: 0.92, infection: 0.87). PLE-DT with LSTM/GRU achieved the highest AUPRC in all tasks.

DISCUSSION

When externally validated in 3 clinical tasks, the LSTM/GRU model architecture with PLE-DT transformed data demonstrated the highest AUPRC in all tasks. Multiple models achieved similar performance when evaluated using AUROC.

CONCLUSION

The LSTM architecture performs as well or better than some newer architectures, and PLE-DT may enhance the AUPRC in variable-length time series data for predicting clinical outcomes during external validation.

摘要

目的

比较和外部验证在 3 个临床任务(临床恶化、严重急性肾损伤[AKI]和疑似感染)中用于处理变长时间序列数据的流行深度学习模型架构和数据转换方法。

材料与方法

这项多中心回顾性研究纳入了 2007 年至 2022 年间在 2 家医疗中心就诊的患者。为每个临床任务创建了不同的数据集,其中一个站点用于训练,另一个站点用于测试。在每个临床任务中比较了 3 种特征工程方法(归一化、标准化和决策树分段线性编码[PLE-DT])和 3 种架构(长短时记忆/门控循环单元[LSTM/GRU]、时间卷积网络和时间分布包装卷积神经网络[TDW-CNN])。使用精度-召回曲线下面积(AUPRC)和接收者操作特征曲线下面积(AUROC)评估模型的区分能力。

结果

研究包括 373825 例用于训练的入院和 256128 例用于测试的入院。在 2 个任务中,LSTM/GRU 模型与 TDW-CNN 模型的平均 AUPRC 相同,且在所有任务中 LSTM/GRU 的平均 AUROC 最高(恶化:0.81,AKI:0.92,感染:0.87)。在所有任务中,PLE-DT 与 LSTM/GRU 结合使用时可获得最高的 AUPRC。

讨论

在 3 个临床任务中进行外部验证时,使用 PLE-DT 转换数据的 LSTM/GRU 模型架构在所有任务中均表现出最高的 AUPRC。在使用 AUROC 评估时,多个模型的性能相似。

结论

LSTM 架构的性能与某些较新架构相当或更好,并且 PLE-DT 可能会在外部验证中提高预测临床结局的变长时间序列数据的 AUPRC。

相似文献

引用本文的文献

本文引用的文献

10
Acute kidney injury.急性肾损伤。
Lancet. 2019 Nov 23;394(10212):1949-1964. doi: 10.1016/S0140-6736(19)32563-2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验