Department of Hand and Foot Surgery, Zibo Central Hospital, Shandong First Medical University, Zibo, 255036, Shandong, China.
Independent researcher,
J Transl Med. 2020 Dec 7;18(1):462. doi: 10.1186/s12967-020-02620-5.
BACKGROUND: Sepsis is a significant cause of mortality in-hospital, especially in ICU patients. Early prediction of sepsis is essential, as prompt and appropriate treatment can improve survival outcomes. Machine learning methods are flexible prediction algorithms with potential advantages over conventional regression and scoring system. The aims of this study were to develop a machine learning approach using XGboost to predict the 30-days mortality for MIMIC-III Patients with sepsis-3 and to determine whether such model performs better than traditional prediction models. METHODS: Using the MIMIC-III v1.4, we identified patients with sepsis-3. The data was split into two groups based on death or survival within 30 days and variables, selected based on clinical significance and availability by stepwise analysis, were displayed and compared between groups. Three predictive models including conventional logistic regression model, SAPS-II score prediction model and XGBoost algorithm model were constructed by R software. Then, the performances of the three models were tested and compared by AUCs of the receiver operating characteristic curves and decision curve analysis. At last, nomogram and clinical impact curve were used to validate the model. RESULTS: A total of 4559 sepsis-3 patients are included in the study, in which, 889 patients were death and 3670 survival within 30 days, respectively. According to the results of AUCs (0.819 [95% CI 0.800-0.838], 0.797 [95% CI 0.781-0.813] and 0.857 [95% CI 0.839-0.876]) and decision curve analysis for the three models, the XGboost model performs best. The risk nomogram and clinical impact curve verify that the XGboost model possesses significant predictive value. CONCLUSIONS: Using machine learning technique by XGboost, more significant prediction model can be built. This XGboost model may prove clinically useful and assist clinicians in tailoring precise management and therapy for the patients with sepsis-3.
背景:败血症是院内死亡的一个重要原因,尤其是在 ICU 患者中。早期预测败血症至关重要,因为及时和适当的治疗可以改善生存结果。机器学习方法是灵活的预测算法,相对于传统的回归和评分系统具有潜在的优势。本研究的目的是开发一种使用 XGboost 的机器学习方法来预测 MIMIC-III 败血症-3 患者的 30 天死亡率,并确定该模型是否优于传统的预测模型。
方法:使用 MIMIC-III v1.4,我们确定了败血症-3 患者。根据 30 天内死亡或生存,将数据分为两组,并通过逐步分析选择基于临床意义和可用性的变量,在两组之间显示和比较。使用 R 软件构建了三种预测模型,包括传统的逻辑回归模型、SAPS-II 评分预测模型和 XGBoost 算法模型。然后,通过接受者操作特征曲线的 AUC 和决策曲线分析测试和比较三种模型的性能。最后,使用列线图和临床影响曲线来验证模型。
结果:共有 4559 名败血症-3 患者纳入研究,其中 889 名患者在 30 天内死亡,3670 名患者存活。根据 AUC(0.819[95%CI 0.800-0.838]、0.797[95%CI 0.781-0.813]和 0.857[95%CI 0.839-0.876])和三种模型的决策曲线分析结果,XGboost 模型表现最佳。风险列线图和临床影响曲线验证了 XGboost 模型具有显著的预测价值。
结论:使用 XGboost 的机器学习技术可以构建更有意义的预测模型。这种 XGboost 模型可能具有临床应用价值,并有助于临床医生为败血症-3 患者量身定制精确的管理和治疗方案。
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024-4
J Transl Med. 2022-5-13
Diagnostics (Basel). 2022-4-24
Zhonghua Shao Shang Za Zhi. 2018-6-20
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022-3
BMC Med Inform Decis Mak. 2020-10-2
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022-11
Front Cell Infect Microbiol. 2025-8-8
Front Med (Lausanne). 2025-8-7
Int J Med Inform. 2020-5-21
Medicine (Baltimore). 2020-5-29
Infect Chemother. 2020-3
J Crit Care Med (Targu Mures). 2020-1-31