文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 XGBoost 对 MIMIC-III 脓毒症-3 患者进行 30 天死亡率预测:机器学习方法。

Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost.

机构信息

Department of Hand and Foot Surgery, Zibo Central Hospital, Shandong First Medical University, Zibo, 255036, Shandong, China.

Independent researcher,

出版信息

J Transl Med. 2020 Dec 7;18(1):462. doi: 10.1186/s12967-020-02620-5.


DOI:10.1186/s12967-020-02620-5
PMID:33287854
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7720497/
Abstract

BACKGROUND: Sepsis is a significant cause of mortality in-hospital, especially in ICU patients. Early prediction of sepsis is essential, as prompt and appropriate treatment can improve survival outcomes. Machine learning methods are flexible prediction algorithms with potential advantages over conventional regression and scoring system. The aims of this study were to develop a machine learning approach using XGboost to predict the 30-days mortality for MIMIC-III Patients with sepsis-3 and to determine whether such model performs better than traditional prediction models. METHODS: Using the MIMIC-III v1.4, we identified patients with sepsis-3. The data was split into two groups based on death or survival within 30 days and variables, selected based on clinical significance and availability by stepwise analysis, were displayed and compared between groups. Three predictive models including conventional logistic regression model, SAPS-II score prediction model and XGBoost algorithm model were constructed by R software. Then, the performances of the three models were tested and compared by AUCs of the receiver operating characteristic curves and decision curve analysis. At last, nomogram and clinical impact curve were used to validate the model. RESULTS: A total of 4559 sepsis-3 patients are included in the study, in which, 889 patients were death and 3670 survival within 30 days, respectively. According to the results of AUCs (0.819 [95% CI 0.800-0.838], 0.797 [95% CI 0.781-0.813] and 0.857 [95% CI 0.839-0.876]) and decision curve analysis for the three models, the XGboost model performs best. The risk nomogram and clinical impact curve verify that the XGboost model possesses significant predictive value. CONCLUSIONS: Using machine learning technique by XGboost, more significant prediction model can be built. This XGboost model may prove clinically useful and assist clinicians in tailoring precise management and therapy for the patients with sepsis-3.

摘要

背景:败血症是院内死亡的一个重要原因,尤其是在 ICU 患者中。早期预测败血症至关重要,因为及时和适当的治疗可以改善生存结果。机器学习方法是灵活的预测算法,相对于传统的回归和评分系统具有潜在的优势。本研究的目的是开发一种使用 XGboost 的机器学习方法来预测 MIMIC-III 败血症-3 患者的 30 天死亡率,并确定该模型是否优于传统的预测模型。

方法:使用 MIMIC-III v1.4,我们确定了败血症-3 患者。根据 30 天内死亡或生存,将数据分为两组,并通过逐步分析选择基于临床意义和可用性的变量,在两组之间显示和比较。使用 R 软件构建了三种预测模型,包括传统的逻辑回归模型、SAPS-II 评分预测模型和 XGBoost 算法模型。然后,通过接受者操作特征曲线的 AUC 和决策曲线分析测试和比较三种模型的性能。最后,使用列线图和临床影响曲线来验证模型。

结果:共有 4559 名败血症-3 患者纳入研究,其中 889 名患者在 30 天内死亡,3670 名患者存活。根据 AUC(0.819[95%CI 0.800-0.838]、0.797[95%CI 0.781-0.813]和 0.857[95%CI 0.839-0.876])和三种模型的决策曲线分析结果,XGboost 模型表现最佳。风险列线图和临床影响曲线验证了 XGboost 模型具有显著的预测价值。

结论:使用 XGboost 的机器学习技术可以构建更有意义的预测模型。这种 XGboost 模型可能具有临床应用价值,并有助于临床医生为败血症-3 患者量身定制精确的管理和治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/86c81b480c68/12967_2020_2620_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/c6b0e7f4273c/12967_2020_2620_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/ebc5d87cc50c/12967_2020_2620_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/da93b82b9a67/12967_2020_2620_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/7d6d32d4934a/12967_2020_2620_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/ff316681b0e8/12967_2020_2620_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/938650dbd71c/12967_2020_2620_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/86c81b480c68/12967_2020_2620_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/c6b0e7f4273c/12967_2020_2620_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/ebc5d87cc50c/12967_2020_2620_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/da93b82b9a67/12967_2020_2620_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/7d6d32d4934a/12967_2020_2620_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/ff316681b0e8/12967_2020_2620_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/938650dbd71c/12967_2020_2620_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c33/7720497/86c81b480c68/12967_2020_2620_Fig7_HTML.jpg

相似文献

[1]
Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost.

J Transl Med. 2020-12-7

[2]
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024-4

[3]
Machine learning for the prediction of acute kidney injury in patients with sepsis.

J Transl Med. 2022-5-13

[4]
Establishment of ICU Mortality Risk Prediction Models with Machine Learning Algorithm Using MIMIC-IV Database.

Diagnostics (Basel). 2022-4-24

[5]
[Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].

Zhonghua Shao Shang Za Zhi. 2018-6-20

[6]
[Predictive value of machine learning for in-hospital mortality for trauma-induced acute respiratory distress syndrome patients: an analysis using the data from MIMIC III].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022-3

[7]
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.

BMC Med Inform Decis Mak. 2020-10-2

[8]
Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.

Acad Emerg Med. 2016-3

[9]
Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.

Eur J Med Res. 2024-1-3

[10]
[Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-III database].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022-11

引用本文的文献

[1]
Significant adverse prognostic events in patients with urosepsis: a machine learning based model development and validation study.

Front Cell Infect Microbiol. 2025-8-8

[2]
Postpartum depression risk prediction using explainable machine learning algorithms.

Front Med (Lausanne). 2025-8-7

[3]
Machine learning based screening of biomarkers associated with cell death and immunosuppression of multiple life stages sepsis populations.

Sci Rep. 2025-8-19

[4]
Practical Models for Predicting Vaginal Intraepithelial Neoplasia in High-Grade Squamous Intraepithelial Lesions Patients within Two years After Conization.

Int J Womens Health. 2025-8-13

[5]
Subpopulation-specific synthetic electronic health records can increase mortality prediction performance.

JAMIA Open. 2025-8-7

[6]
Identification and validation of ANXA3 and SOCS3 as biomarkers for acute myocardial infarction related to sphingolipid metabolism.

Hereditas. 2025-8-4

[7]
Association between atherogenic index of plasma and hypertension combined with diabetes mellitus in United States adults: an analysis of the NHANES surveys from 2011 to 2016.

J Health Popul Nutr. 2025-7-30

[8]
Forecasting from Clinical Textual Time Series: Adaptations of the Encoder and Decoder Language Model Families.

ArXiv. 2025-4-20

[9]
Development and validation of machine learning-based risk prediction models for ICU-acquired weakness: a prospective cohort study.

Eur J Med Res. 2025-7-24

[10]
Predictive model and risk analysis for outcomes in diabetic foot ulcer using eXtreme Gradient Boosting algorithm and SHapley Additive exPlanation.

World J Diabetes. 2025-7-15

本文引用的文献

[1]
Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis.

Intensive Care Med. 2020-8

[2]
The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit.

Int J Med Inform. 2020-5-21

[3]
Biomarker combination and SOFA score for the prediction of mortality in sepsis and septic shock: A prospective observational study according to the Sepsis-3 definitions.

Medicine (Baltimore). 2020-5-29

[4]
STAPLAg: a convenient early warning score for use in infected patients in the intensive care unit.

Medicine (Baltimore). 2020-5-29

[5]
The dynamic change of serum S100B levels from day 1 to day 3 is more associated with sepsis-associated encephalopathy.

Sci Rep. 2020-5-7

[6]
Sepsis and Septic Shock in Patients With Malignancies: A Groupe de Recherche Respiratoire en Réanimation Onco-Hématologique Study.

Crit Care Med. 2020-6

[7]
Hemodynamic and skin perfusion is associated with successful enteral nutrition therapy in septic shock patients.

Clin Nutr. 2020-12

[8]
A LASSO-derived risk model for long-term mortality in Chinese patients with acute coronary syndrome.

J Transl Med. 2020-4-6

[9]
Antimicrobial Therapy and Antimicrobial Stewardship in Sepsis.

Infect Chemother. 2020-3

[10]
Prevalence and Prognostic Impact of Hypernatremia in Sepsis and Septic Shock Patients in the Intensive Care Unit: A Single Centre Experience.

J Crit Care Med (Targu Mures). 2020-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索