Suppr超能文献

EPR 自旋捕获在光合作用光保护过程中监测单线态氧的时间动态。

EPR Spin-Trapping for Monitoring Temporal Dynamics of Singlet Oxygen during Photoprotection in Photosynthesis.

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

Biochemistry. 2024 May 7;63(9):1214-1224. doi: 10.1021/acs.biochem.4c00028. Epub 2024 Apr 28.

Abstract

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (O*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of O* in photodamage and cell signaling, few studies directly correlate O* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of O* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of O* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of O* in chlorophyll-containing photosynthetic membranes. We find that the apparent O* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of O* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of O* during high light. Upon saturation of NPQ, the concentration of O* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).

摘要

光保护能量耗散过程的一个核心目标是调节光合作用器官中的单线态氧(O*)和活性氧物质。尽管 O* 参与了光损伤和细胞信号转导,但很少有研究直接将 O* 的形成与非光化学猝灭(NPQ)相关联或缺乏关联。在这里,我们结合自旋捕获电子顺磁共振(EPR)和时间分辨荧光光谱学,实时跟踪 O* 在植物类囊体膜光保护过程中的参与情况。用于检测 O* 的 EPR 自旋捕获方法首先在基于染料的化学体系中的光致敏化作用中进行了优化,然后用于建立监测含叶绿素的光合作用膜中 O* 时间动态的方法。我们发现,在连续光照 1 小时的过程中,膜中 O* 的表观浓度发生变化。在对高光强的初始响应中,O* 的浓度与 NPQ 导致的叶绿素荧光寿命降低平行下降。用 Nigericin(跨膜质子梯度的解偶联剂)处理膜会延迟高光下 NPQ 的激活以及与之相关的 O* 猝灭。当 NPQ 饱和时,未处理和 Nigericin 处理的膜中 O* 的浓度均增加,这反映了过量能量耗散在短期内减轻光氧化应激的效用(即,高光的最初约 10 分钟)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73c8/11080054/575345101d1a/bi4c00028_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验