Suppr超能文献

光合电子传递过程中活性氧生成的调控。

Regulation of the generation of reactive oxygen species during photosynthetic electron transport.

作者信息

Krieger-Liszkay Anja, Shimakawa Ginga

机构信息

Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, 91198 Gif-sur-Yvette Cedex, France.

Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.

出版信息

Biochem Soc Trans. 2022 Apr 29;50(2):1025-1034. doi: 10.1042/BST20211246.

Abstract

Light capture by chlorophylls and photosynthetic electron transport bury the risk of the generation of reactive oxygen species (ROS) including singlet oxygen, superoxide anion radicals and hydrogen peroxide. Rapid changes in light intensity, electron fluxes and accumulation of strong oxidants and reductants increase ROS production. Superoxide is mainly generated at the level of photosystem I while photosystem II is the main source of singlet oxygen. ROS can induce oxidative damage of the photosynthetic apparatus, however, ROS are also important to tune processes inside the chloroplast and participate in retrograde signalling regulating the expression of genes involved in acclimation responses. Under most physiological conditions light harvesting and photosynthetic electron transport are regulated to keep the level of ROS at a non-destructive level. Photosystem II is most prone to photoinhibition but can be quickly repaired while photosystem I is protected in most cases. The size of the transmembrane proton gradient is central for the onset of mechanisms that protect against photoinhibition. The proton gradient allows dissipation of excess energy as heat in the antenna systems and it regulates electron transport. pH-dependent slowing down of electron donation to photosystem I protects it against ROS generation and damage. Cyclic electron transfer and photoreduction of oxygen contribute to the size of the proton gradient. The yield of singlet oxygen production in photosystem II is regulated by changes in the midpoint potential of its primary quinone acceptor. In addition, numerous antioxidants inside the photosystems, the antenna and the thylakoid membrane quench or scavenge ROS.

摘要

叶绿素捕获光能以及光合电子传递会带来产生包括单线态氧、超氧阴离子自由基和过氧化氢在内的活性氧(ROS)的风险。光照强度、电子通量的快速变化以及强氧化剂和还原剂的积累会增加ROS的产生。超氧主要在光系统I水平产生,而光系统II是单线态氧的主要来源。ROS可诱导光合装置的氧化损伤,然而,ROS对于调节叶绿体内部的过程也很重要,并参与逆行信号传导,调节与适应反应相关基因的表达。在大多数生理条件下,光能捕获和光合电子传递受到调节,以使ROS水平保持在非破坏水平。光系统II最容易受到光抑制,但可以快速修复,而光系统I在大多数情况下受到保护。跨膜质子梯度的大小对于防止光抑制机制的启动至关重要。质子梯度允许天线系统以热的形式耗散多余的能量,并调节电子传递。依赖pH的向光系统I供电子的减缓保护其免受ROS的产生和损伤。循环电子传递和氧的光还原有助于质子梯度的大小。光系统II中单线态氧产生的产量受其初级醌受体中点电位变化的调节。此外,光系统、天线和类囊体膜内的多种抗氧化剂会淬灭或清除ROS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验