CEITEC - Central European Institute of Technology, Kamenice 5, 625 00 Brno, Czech Republic.
National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
Nanoscale. 2024 May 30;16(21):10221-10229. doi: 10.1039/d4nr00591k.
Membrane fusion is crucial for infection of enveloped viruses, cellular transport, and drug delivery liposomes. Nanoparticles can serve as fusogenic agents facilitating such membrane fusion for direct transmembrane transport. However, the underlying mechanisms of nanoparticle-induced fusion and the ideal properties of such nanoparticles remain largely unknown. Here, we used molecular dynamics simulations to investigate the efficacy of spheroidal nanoparticles with different size, prolateness, and ligand interaction strengths to enhance fusion between vesicles. By systematically varying nanoparticle properties, we identified how each parameter affects the fusion process and determined the optimal parameter range that promotes fusion. These findings provide valuable insights for the design and optimization of fusogenic nanoparticles with potential biotechnological and biomedical applications.
膜融合对于包膜病毒的感染、细胞运输和药物传递脂质体至关重要。纳米颗粒可以作为融合剂,促进这种膜融合,实现直接跨膜运输。然而,纳米颗粒诱导融合的潜在机制以及此类纳米颗粒的理想特性在很大程度上仍然未知。在这里,我们使用分子动力学模拟研究了具有不同大小、扁率和配体相互作用强度的球形纳米颗粒增强囊泡融合的效果。通过系统地改变纳米颗粒的性质,我们确定了每个参数如何影响融合过程,并确定了促进融合的最佳参数范围。这些发现为具有潜在生物技术和生物医学应用的融合纳米颗粒的设计和优化提供了有价值的见解。