Suppr超能文献

用于收集和输送载有病毒的粒径分级空气传播颗粒的生物级联-VIVAS系统。

The BioCascade-VIVAS system for collection and delivery of virus-laden size-fractionated airborne particles.

作者信息

Shankar Sripriya Nannu, Vass William B, Lednicky John A, Logan Tracey, Messcher Rebeccah L, Eiguren-Fernandez Arantzazu, Amanatidis Stavros, Sabo-Attwood Tara, Wu Chang-Yu

机构信息

Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA.

Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA.

出版信息

J Aerosol Sci. 2024 Jan;175. doi: 10.1016/j.jaerosci.2023.106263. Epub 2023 Sep 11.

Abstract

The size of virus-laden particles determines whether aerosol or droplet transmission is dominant in the airborne transmission of pathogens. Determining dominant transmission pathways is critical to implementing effective exposure risk mitigation strategies. The aerobiology discipline greatly needs an air sampling system that can collect virus-laden airborne particles, separate them by particle diameter, and deliver them directly onto host cells without inactivating virus or killing cells. We report the use of a testing system that combines a BioAerosol Nebulizing Generator (BANG) to aerosolize Human coronavirus (HCoV)-OC43 (OC43) and an integrated air sampling system comprised of a BioCascade impactor (BC) and Viable Virus Aerosol Sampler (VIVAS), together referred to as BC-VIVAS, to deliver the aerosolized virus directly onto Vero E6 cells. Particles were collected into four stages according to their aerodynamic diameter (Stage 1: >9.43 μm, Stage 2: 3.81-9.43 μm, Stage 3: 1.41-3.81 μm and Stage 4: <1.41 μm). OC43 was detected by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses of samples from all BC-VIVAS stages. The calculated OC43 genome equivalent counts per cm of air ranged from 0.34±0.09 to 70.28±12.56, with the highest concentrations in stage 3 (1.41-3.81 μm) and stage 4 (<1.41 μm). Virus-induced cytopathic effects appeared only in cells exposed to particles collected in stages 3 and 4, demonstrating the presence of viable OC43 in particles <3.81 μm. This study demonstrates the dual utility of the BC-VIVAS as particle size-fractionating air sampler and a direct exposure system for aerosolized viruses. Such utility may help minimize conventional post-collection sample processing time required to assess the viability of airborne viruses and increase the understanding about transmission pathways for airborne pathogens.

摘要

携带病毒颗粒的大小决定了病原体空气传播中气溶胶传播或飞沫传播哪个占主导。确定主要传播途径对于实施有效的暴露风险缓解策略至关重要。空气生物学领域非常需要一种空气采样系统,该系统能够收集携带病毒的空气颗粒,按粒径分离它们,并将它们直接递送至宿主细胞而不使病毒失活或杀死细胞。我们报告了一种测试系统的使用情况,该系统结合了生物气溶胶雾化发生器(BANG)来雾化人冠状病毒(HCoV)-OC43(OC43),以及一个由生物级联撞击器(BC)和活病毒气溶胶采样器(VIVAS)组成的集成空气采样系统,统称为BC-VIVAS,以将雾化后的病毒直接递送至Vero E6细胞。颗粒根据其空气动力学直径被收集到四个阶段(第1阶段:>9.43μm,第2阶段:3.81 - 9.43μm,第3阶段:1.41 - 3.81μm,第4阶段:<1.41μm)。通过对来自所有BC-VIVAS阶段的样本进行逆转录定量聚合酶链反应(RT-qPCR)分析来检测OC43。计算得出每立方厘米空气中OC43基因组当量计数范围为0.34±0.09至70.28±12.56,在第3阶段(1.41 - 3.81μm)和第4阶段(<1.41μm)浓度最高。病毒诱导的细胞病变效应仅出现在暴露于第3阶段和第4阶段收集的颗粒的细胞中,表明在<3.81μm的颗粒中存在活的OC43。这项研究证明了BC-VIVAS作为粒径分级空气采样器和气溶胶化病毒直接暴露系统的双重用途。这种用途可能有助于最大限度减少评估空气传播病毒活力所需的传统收集后样本处理时间,并增进对空气传播病原体传播途径的了解。

相似文献

1
The BioCascade-VIVAS system for collection and delivery of virus-laden size-fractionated airborne particles.
J Aerosol Sci. 2024 Jan;175. doi: 10.1016/j.jaerosci.2023.106263. Epub 2023 Sep 11.
2
The BioCascade Impactor: A novel device for direct collection of size-fractionated bioaerosols into liquid medium.
Aerosol Sci Technol. 2024;58(3):264-275. doi: 10.1080/02786826.2024.2301941. Epub 2024 Jan 25.
3
SARS-CoV-2 in residential rooms of two self-isolating persons with COVID-19.
J Aerosol Sci. 2022 Jan;159:105870. doi: 10.1016/j.jaerosci.2021.105870. Epub 2021 Aug 28.
5
Concentrating viable airborne pathogens using a virtual impactor with a compact water-based condensation air sampler.
Aerosol Sci Technol. 2024;58(10):1114-1128. doi: 10.1080/02786826.2024.2380096. Epub 2024 Jul 31.
6
Bioaerosol sampling for the detection of aerosolized influenza virus.
Influenza Other Respir Viruses. 2007 May;1(3):113-20. doi: 10.1111/j.1750-2659.2007.00020.x.
7
Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses.
PLoS One. 2015 Aug 19;10(8):e0135675. doi: 10.1371/journal.pone.0135675. eCollection 2015.
9
Impact of sampling and storage stress on the recovery of airborne SARS-CoV-2 virus surrogate captured by filtration.
J Occup Environ Hyg. 2021 Sep;18(9):461-475. doi: 10.1080/15459624.2021.1948047. Epub 2021 Aug 17.
10
High-volume sampler for size-selective sampling of bioaerosols including viruses.
Atmos Environ (1994). 2021 Nov 15;265:118720. doi: 10.1016/j.atmosenv.2021.118720. Epub 2021 Sep 12.

引用本文的文献

1
Occupational exposure monitoring of airborne respiratory viruses in outpatient medical clinics.
Aerosol Sci Technol. 2024 Oct 23. doi: 10.1080/02786826.2024.2403580.
3
Concentrating viable airborne pathogens using a virtual impactor with a compact water-based condensation air sampler.
Aerosol Sci Technol. 2024;58(10):1114-1128. doi: 10.1080/02786826.2024.2380096. Epub 2024 Jul 31.

本文引用的文献

1
Aerosol concentrations and size distributions during clinical dental procedures.
Heliyon. 2022 Oct 18;8(10):e11074. doi: 10.1016/j.heliyon.2022.e11074. eCollection 2022 Oct.
2
Interaction between Sars-CoV-2 structural proteins and host cellular receptors: From basic mechanisms to clinical perspectives.
Adv Protein Chem Struct Biol. 2022;132:243-277. doi: 10.1016/bs.apcsb.2022.05.010. Epub 2022 Jun 9.
3
Stability and transmissibility of SARS-CoV-2 in the environment.
J Med Virol. 2023 Jan;95(1):e28103. doi: 10.1002/jmv.28103. Epub 2022 Sep 7.
6
SARS-CoV-2 in residential rooms of two self-isolating persons with COVID-19.
J Aerosol Sci. 2022 Jan;159:105870. doi: 10.1016/j.jaerosci.2021.105870. Epub 2021 Aug 28.
7
The size and culturability of patient-generated SARS-CoV-2 aerosol.
J Expo Sci Environ Epidemiol. 2022 Sep;32(5):706-711. doi: 10.1038/s41370-021-00376-8. Epub 2021 Aug 18.
9
Utility of Three Nebulizers in Investigating the Infectivity of Airborne Viruses.
Appl Environ Microbiol. 2021 Jul 27;87(16):e0049721. doi: 10.1128/AEM.00497-21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验