Shankar Sripriya Nannu, Vass William B, Lednicky John A, Logan Tracey, Messcher Rebeccah L, Eiguren-Fernandez Arantzazu, Amanatidis Stavros, Sabo-Attwood Tara, Wu Chang-Yu
Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA.
Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA.
J Aerosol Sci. 2024 Jan;175. doi: 10.1016/j.jaerosci.2023.106263. Epub 2023 Sep 11.
The size of virus-laden particles determines whether aerosol or droplet transmission is dominant in the airborne transmission of pathogens. Determining dominant transmission pathways is critical to implementing effective exposure risk mitigation strategies. The aerobiology discipline greatly needs an air sampling system that can collect virus-laden airborne particles, separate them by particle diameter, and deliver them directly onto host cells without inactivating virus or killing cells. We report the use of a testing system that combines a BioAerosol Nebulizing Generator (BANG) to aerosolize Human coronavirus (HCoV)-OC43 (OC43) and an integrated air sampling system comprised of a BioCascade impactor (BC) and Viable Virus Aerosol Sampler (VIVAS), together referred to as BC-VIVAS, to deliver the aerosolized virus directly onto Vero E6 cells. Particles were collected into four stages according to their aerodynamic diameter (Stage 1: >9.43 μm, Stage 2: 3.81-9.43 μm, Stage 3: 1.41-3.81 μm and Stage 4: <1.41 μm). OC43 was detected by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses of samples from all BC-VIVAS stages. The calculated OC43 genome equivalent counts per cm of air ranged from 0.34±0.09 to 70.28±12.56, with the highest concentrations in stage 3 (1.41-3.81 μm) and stage 4 (<1.41 μm). Virus-induced cytopathic effects appeared only in cells exposed to particles collected in stages 3 and 4, demonstrating the presence of viable OC43 in particles <3.81 μm. This study demonstrates the dual utility of the BC-VIVAS as particle size-fractionating air sampler and a direct exposure system for aerosolized viruses. Such utility may help minimize conventional post-collection sample processing time required to assess the viability of airborne viruses and increase the understanding about transmission pathways for airborne pathogens.
携带病毒颗粒的大小决定了病原体空气传播中气溶胶传播或飞沫传播哪个占主导。确定主要传播途径对于实施有效的暴露风险缓解策略至关重要。空气生物学领域非常需要一种空气采样系统,该系统能够收集携带病毒的空气颗粒,按粒径分离它们,并将它们直接递送至宿主细胞而不使病毒失活或杀死细胞。我们报告了一种测试系统的使用情况,该系统结合了生物气溶胶雾化发生器(BANG)来雾化人冠状病毒(HCoV)-OC43(OC43),以及一个由生物级联撞击器(BC)和活病毒气溶胶采样器(VIVAS)组成的集成空气采样系统,统称为BC-VIVAS,以将雾化后的病毒直接递送至Vero E6细胞。颗粒根据其空气动力学直径被收集到四个阶段(第1阶段:>9.43μm,第2阶段:3.81 - 9.43μm,第3阶段:1.41 - 3.81μm,第4阶段:<1.41μm)。通过对来自所有BC-VIVAS阶段的样本进行逆转录定量聚合酶链反应(RT-qPCR)分析来检测OC43。计算得出每立方厘米空气中OC43基因组当量计数范围为0.34±0.09至70.28±12.56,在第3阶段(1.41 - 3.81μm)和第4阶段(<1.41μm)浓度最高。病毒诱导的细胞病变效应仅出现在暴露于第3阶段和第4阶段收集的颗粒的细胞中,表明在<3.81μm的颗粒中存在活的OC43。这项研究证明了BC-VIVAS作为粒径分级空气采样器和气溶胶化病毒直接暴露系统的双重用途。这种用途可能有助于最大限度减少评估空气传播病毒活力所需的传统收集后样本处理时间,并增进对空气传播病原体传播途径的了解。